Publications by authors named "Dieter Hackenberg"

Background: Most components from the roots of sugar beet (Beta vulgaris ssp. vulgaris) are valorized by industry. However, the leaves are currently left on the field, even though they contain large amounts of protein.

View Article and Find Full Text PDF

Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant.

View Article and Find Full Text PDF

Sexual reproduction in angiosperms requires the production and delivery of two male gametes by a three-celled haploid male gametophyte. This demands synchronized gene expression in a short developmental window to ensure double fertilization and seed set. While transcriptomic changes in developing pollen are known for Arabidopsis, no studies have integrated RNA and proteomic data in this model.

View Article and Find Full Text PDF

Turnip yellows virus (TuYV) is aphid-transmitted and causes considerable yield losses in oilseed rape (OSR, , genome: AACC) and vegetable brassicas. Insecticide control of the aphid vector is limited due to insecticide resistance and the banning of the most effective active ingredients in the EU. There is only one source of TuYV resistance in current commercial OSR varieties, which has been mapped to a single dominant quantitative trait locus (QTL) on chromosome A04.

View Article and Find Full Text PDF

The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants.

View Article and Find Full Text PDF

Partially dominant resistance to Turnip yellows virus associated with one major QTL was identified in the natural allotetraploid oilseed rape cultivar Yudal. Turnip yellows virus (TuYV) is transmitted by the peach-potato aphid (Myzus persicae) and causes severe yield losses in commercial oilseed rape crops (Brassica napus). There is currently only one genetic resource for resistance to TuYV available in brassica, which was identified in the re-synthesised B.

View Article and Find Full Text PDF

The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants.

View Article and Find Full Text PDF

Evolutionary mechanisms underlying innovation of cell types have remained largely unclear. In multicellular eukaryotes, the evolutionary molecular origin of sperm differentiation is unknown in most lineages. Here, we report that in algal ancestors of land plants, changes in the DNA-binding domain of the ancestor of the MYB transcription factor DUO1 enabled the recognition of a new cis-regulatory element.

View Article and Find Full Text PDF

Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions.

View Article and Find Full Text PDF

In this study, we report the functional characterization of heterotrimeric G-proteins from a nonvascular plant, the moss Physcomitrella patens. In plants, G-proteins have been characterized from only a few angiosperms to date, where their involvement has been shown during regulation of multiple signaling and developmental pathways affecting overall plant fitness. In addition to its unparalleled evolutionary position in the plant lineages, the P.

View Article and Find Full Text PDF

Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophyaceaen green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago.

View Article and Find Full Text PDF

The lack of heterotrimeric G-protein homologs in the sequenced genomes of green algae has led to the hypothesis that, in plants, this signaling mechanism coevolved with the embryophytic life cycle and the acquisition of terrestrial habitat. Given the large evolutionary gap that exists between the chlorophyte green algae and most basal land plants, the bryophytes, we evaluated the presence of this signaling complex in a charophyte green alga, Chara braunii, proposed to be the closest living relative of land plants. The C.

View Article and Find Full Text PDF

Heterotrimeric G-proteins are important signaling intermediates in all eukaryotes. These proteins link signal perception by a cell surface localized receptor to the downstream effectors of a given signaling pathways. The minimal core of the heterotrimeric G-protein complex consists of Gα, Gβ, and Gγ subunits, the G protein coupled receptor (GPCR) and the regulator of G-protein signaling (RGS) proteins.

View Article and Find Full Text PDF

The transcription factor NF-Y consists of the three subunits A, B and C, which are encoded in Arabidopsis in large gene families. The multiplicity of the genes implies that NF-Y may act in diverse combinations of each subunit for the transcriptional control. We aimed to assign a function in stress response and plant development to NF-YC subunits by analyzing the expression of NF-Y genes and exploitation of nf-y mutants.

View Article and Find Full Text PDF

The eukaryotic transcription factor NF-Y consists of three subunits (A, B, and C), which are encoded in Arabidopsis thaliana in multigene families consisting of 10, 13, and 13 genes, respectively. In principle, all potential combinations of the subunits are possible for the assembly of the heterotrimeric complex. We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y.

View Article and Find Full Text PDF

Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks.

View Article and Find Full Text PDF