The fibrillary aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a potential target for diagnostics and therapeutics. Although substantial effort has been devoted to the development of positron emission tomography (PET) probes for detecting α-synuclein aggregates, no clinically suitable tracer has been reported. The design and synthesis of 43 new -(6-methoxypyridin-3-yl)quinolin-2-amine derivatives and an evaluation of their α-synuclein binding affinity is reported here.
View Article and Find Full Text PDFIdentification of Small Molecule Dimethyoxyphenol Piperazine Inhibitors of Alpha-Synuclein Fibril Growth Alpha-synuclein (asyn) fibril accumulation is the defining feature of Parkinson disease and is a target for disease-modifying treatments. One therapeutic strategy to reduce fibril accumulation is inhibition of asyn fibril growth. We developed a sensitive fluorescence-based fibril growth assay to screen for small molecule inhibitors.
View Article and Find Full Text PDFThe accumulation of Alpha-synuclein (Asyn) fibrils is the defining pathologic feature in Parkinson Disease (PD), Lewy Body Dementia (LBD), and Multiple System Atrophy (MSA). As such, the process of Asyn fibril formation has been an important research area and fibrils themselves have become attractive targets for disease diagnosis and therapeutic intervention. Due to the presence of mixed populations of fibrillar proteins associated with neurodegenerative diseases in brain tissue, high-resolution structures of Asyn fibrils are essential for the design of high-specificity imaging and therapeutic agents.
View Article and Find Full Text PDFLysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1β by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored.
View Article and Find Full Text PDFAnn Clin Transl Neurol
February 2022
Objective: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD).
View Article and Find Full Text PDFSci Transl Med
February 2020
Apolipoprotein E () ε4 genotype is associated with increased risk of dementia in Parkinson's disease (PD), but the mechanism is not clear, because patients often have a mixture of α-synuclein (αSyn), amyloid-β (Aβ), and tau pathologies. ε4 exacerbates brain Aβ pathology, as well as tau pathology, but it is not clear whether genotype independently regulates αSyn pathology. In this study, we generated A53T αSyn transgenic mice (A53T) on knockout (A53T/EKO) or human knockin backgrounds (A53T/E2, E3, and E4).
View Article and Find Full Text PDFAggregates of the RNA-binding protein TDP-43 (TAR DNA-binding protein) are a hallmark of the overlapping neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The process of TDP-43 aggregation remains poorly understood, and whether it includes formation of intermediate complexes is unknown. Here, we analyzed aggregates derived from purified TDP-43 under semidenaturing conditions, identifying distinct oligomeric complexes at the initial time points before the formation of large aggregates.
View Article and Find Full Text PDFParkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2018
Here we report the synthesis and in vitro evaluation of 25 new quinolinyl analogues for α-synuclein aggregates. Three lead compounds were subsequently labeled with carbon-11 or fluorine-18 to directly assess their potency in a direct radioactive competitive binding assay ng both α-synuclein fibrils and tissue homogenates from Alzheimer's disease (AD) cases. The modest binding affinities of these three radioligands toward α-synuclein were comparable with results from the Thioflavin T fluorescence assay.
View Article and Find Full Text PDFFibrils of the protein α-synuclein (α-syn) are implicated in the pathogenesis of Parkinson's disease and related neurodegenerative disorders. We have reported a high-resolution structure (PDB 2N0A) of an α-syn fibril form prepared by in vitro incubation of monomeric protein in 50 mM sodium phosphate buffer pH 7.4 with 0.
View Article and Find Full Text PDFThe accumulation of α-synuclein (α-syn) fibrils in neuronal inclusions is the defining pathological process in Parkinson's disease (PD). A pathogenic role for α-syn fibril accumulation is supported by the identification of dominantly inherited α-syn () gene mutations in rare cases of familial PD. Fibril formation involves a spontaneous nucleation event in which soluble α-syn monomers associate to form seeds, followed by fibril growth during which monomeric α-syn molecules sequentially associate with existing seeds.
View Article and Find Full Text PDFFluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aβ pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer's disease (AD) brain sections, and remarkable specificity for mapping Aβ compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [F]-9, a PET tracer demonstrates superior (2-10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aβ plaques. Pharmacokinetic studies indicate high initial influx of [F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques.
View Article and Find Full Text PDF