Publications by authors named "Dhananjay Deshmukh"

Article Synopsis
  • 3D scaffolds provide a more natural environment for cell studies, but synthetic hydrogels often have limited pore sizes that restrict cell movement.
  • A new method using liquid-liquid phase separation creates macroporous hydrogels with adjustable pore sizes by controlling polymerization conditions like light intensity and hydrogel composition.
  • These macroporous gels, suitable for cell encapsulation, enhance cell spreading and migration, mimicking natural extracellular matrix (ECM) environments.
View Article and Find Full Text PDF

Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel.

View Article and Find Full Text PDF

Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules.

View Article and Find Full Text PDF

Anthropogenic activities release substantial amounts of organic components into the atmosphere. In this study, eight groups of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, n-alkanes, fatty acids, fatty alcohols, phthalate esters, and lignin and resin acids were identified in the ambient aerosol samples collected from a regional background site in the Korean Climate Observatory at Gosan (KCOG), South Korea. The total identified organics were most abundant in winter (220 ± 60.

View Article and Find Full Text PDF

Considering the significance of PM aerosol in assessing health impacts of air pollution, an extensive analysis of PM samples collected at an urban site in Delhi is presented in this study. Overall, PM contributed to about 50 % of PM mass which is alarming especially in Delhi where particle mass loadings are usually higher than prescribed limits. Major portion of PM consisted of organic matter (OM) that formed nearly 47 % of PM mass.

View Article and Find Full Text PDF

Aerosol liquid water (ALW) can serve as an aqueous-phase medium for numerous chemical reactions and consequently enhance the formation of secondary aerosols in a highly humid atmosphere. However, the aqueous-phase formation of secondary organic aerosols (SOAs) is not well understood in the Indian regions, particularly in tropical peninsular India. In this study, we collected total suspended particulate samples (n = 30) at a semiarid station (Ballari; 15.

View Article and Find Full Text PDF

We collected total suspended particulate (TSP) samples from January 2010 to December 2010 at Sapporo deciduous forest to understand the oxidation processes of biogenic volatile organic compounds (BVOCs). The gas chromatography-mass spectrometric technique was applied to determine biogenic secondary organic aerosols (BSOAs) in the TSP samples. We found the predominance of the isoprene SOA (iSOA) tracers (20.

View Article and Find Full Text PDF

Complex three-dimensional (3D) models are emerging as a key technology to support research areas in personalised medicine, such as drug development and regenerative medicine. Tools for manipulation and positioning of microtissues play a crucial role in the microtissue life cycle from production to end-point analysis. The ability to precisely locate microtissues can improve the efficiency and reliability of processes and investigations by reducing experimental time and by providing more controlled parameters.

View Article and Find Full Text PDF

Atmospheric organic aerosol (OA) are considered as a significant contributor to the light absorption of OA, but its relationship with abundance, composition and sources are not understood well. In this study, the abundance, chemical structural characteristics, and light absorption property of HULIS and other low-to-high polar organics in PM collected in Tomakomai Experimental Forest (TOEF) were investigated with consideration of their possible sources. HULIS were the most abundant (51%), and correlation analysis revealed that biogenic secondary organic aerosols significantly contribute to HULIS.

View Article and Find Full Text PDF

The isotopic composition of stable carbon (δC) and nitrogen (δN) in marine aerosols influenced by the continental outflows are useful proxies for understanding the aging and secondary formation processes. Every winter, the haze pollutants transported from South Asia significantly affect the chemical composition of marine atmospheric boundary layer of the Arabian Sea. Here, we assessed the δC of total carbon (TC) and δN of total nitrogen (TN) in marine aerosols collected over the Arabian Sea during a winter cruise (6-24 December 2018).

View Article and Find Full Text PDF

Our objective was to quantify the similarity in the meteorological measurements of 17 stations under three weather networks in the Alberta oil sands region. The networks were for climate monitoring under the water quantity program (WQP) and air program, including Meteorological Towers (MT) and Edge Sites (ES). The meteorological parameters were air temperature (AT), relative humidity (RH), solar radiation (SR), barometric pressure (BP), precipitation (PR), and snow depth (SD).

View Article and Find Full Text PDF

Recent advances in additive manufacturing (AM) technologies provide tools to fabricate biological structures with complex three-dimensional (3D) organization. Deposition-based approaches have been exploited to manufacture multimaterial constructs. Stimulus-triggered approaches have been used to fabricate scaffolds with high resolution.

View Article and Find Full Text PDF

Total suspended particulate (TSP) samples were collected in a deciduous broadleaf forest in Sapporo, Hokkaido, Japan, from January to December 2010 to understand the molecular composition and abundance of sugar compounds (SCs) in atmospheric aerosols. We analyzed the samples for anhydrosugars, primary sugars, and sugar alcohols using a gas chromatograph-mass spectrometer. The annual mean concentrations of total SCs ranged from 16.

View Article and Find Full Text PDF

Understanding how the sources of an atmospheric organic aerosol (OA) govern its burden is crucial for assessing its impact on the environment and adopting proper control strategies. In this study, the sources of OA over Beijing were assessed year-around based on the combination of two separation approaches for OA, one from chemical fractionation into the high-polarity fraction of water-soluble organic matter (HP-WSOM), humic-like substances (HULIS), and water-insoluble organic matter (WISOM), and the other from statistical grouping using positive matrix factorization (PMF) of high-resolution aerosol mass spectra. Among the three OA fractions, HP-WSOM has the highest O/C ratio (1.

View Article and Find Full Text PDF

Hydrogel-based three-dimensional (3D) cellular models are attractive for bioengineering and pharmaceutical development as they can more closely resemble the cellular function of native tissue outside of the body. In general, these models are composed of tissue specific cells embedded within a support material, such as a hydrogel. As hydrogel properties directly affect cell function, hydrogel composition is often tailored to the cell type(s) of interest and the functional objective of the model.

View Article and Find Full Text PDF

Acoustophoresis, the movement of particles with sound, has evolved as a promising handling tool for micrometer-sized particles. Recent developments in thin film deposition technologies have enabled the reproducible fabrication of thin film piezoelectric materials for miniaturized ultrasound transducers. In this study, we combine both technologies and present the first implementation of a thin film Pb(Zr,Ti)O (PZT) transducer as actuation source for bulk acoustic wave (BAW) acoustophoresis.

View Article and Find Full Text PDF

The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.

View Article and Find Full Text PDF

The removal of phenolic compounds, i.e., o-cresol, m-cresol, and p-cresol from aqueous solution have been evaluated employing activated carbon (AC) coated with polymer supported iron nanoparticles (FeNPs).

View Article and Find Full Text PDF

Organic molecular markers are important atmospheric constituents. Their formation and sources are important aspects of the study of urban and rural air quality. We collected PM10 aerosol samples from the Mahanadi Riverside Basin (MRB), a rural part of eastern central India, during the winter of 2011.

View Article and Find Full Text PDF

The effects of combustion of the fire crackers on the air quality in eastern Central India were studied for the first time during Diwali festival. This case study analyzes the size distribution and temporal variation of aerosols collected in the rural area of eastern Central India during pre-diwali, Diwali and post-diwali period for the year of 2011. Fifteen aerosol samples were collected during the special case study of Diwali period using Andersen sampler.

View Article and Find Full Text PDF

To study the size distribution and seasonal variations of atmospheric aerosols, size-segregated aerosol samples were collected from July 2009 to June 2010 using the nine-stage cascade impactor aerosol sampler in Durg City, India. The aerosol particles exhibited bimodal size distribution on mass concentration with a peak at 2.5-4.

View Article and Find Full Text PDF

PM(10) aerosol samples were collected in Durg City, India from July 2009 to June 2010 using an Andersen aerosol sampler and analyzed for eight water-soluble ionic species, namely, Na(+), NH(4) (+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3) (-) and SO(4) (2-) by ion chromatography. The annual average concentration of PM(10) (253.5 ± 99.

View Article and Find Full Text PDF