Publications by authors named "Dewight Williams"

Visualizing the structure of the protein-inorganic interface is critically important for a more complete understanding of biomineralization. Unfortunately, there are limited approaches for the direct and detailed study of biomolecules that interact with inorganic materials. Here, we use single-particle cryo-electron microscopy (cryo-EM) to study the protein-nanoparticle (NP) interactions of human light chain ferritin and visualize the high-resolution details of the protein-inorganic interface.

View Article and Find Full Text PDF

Monoclonal antibodies against the Ebola virus (EBOV) surface glycoprotein are effective treatments for EBOV disease. Antibodies targeting the EBOV glycoprotein (GP) head epitope have potent neutralization and Fc effector function activity and thus are of high interest as therapeutics and for vaccine design. Here we focus on the head-binding antibodies 1A2 and 1D5, which have been identified previously in a longitudinal study of survivors of EBOV infection.

View Article and Find Full Text PDF

Geobacter sulfurreducens is an electroactive bacterium capable of reducing metal oxides in the environment and electrodes in engineered systems. Geobacter sp. are the keystone organisms in electrogenic biofilms, as their respiration consumes fermentation products produced by other organisms and reduces a terminal electron acceptor e.

View Article and Find Full Text PDF

Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.

View Article and Find Full Text PDF

Improving the precision and function of encapsulating three-dimensional (3D) DNA nanostructures via curved geometries could have transformative impacts on areas such as molecular transport, drug delivery, and nanofabrication. However, the addition of non-rasterized curvature escalates design complexity without algorithmic regularity, and these challenges have limited the ad hoc development and usage of previously unknown shapes. In this work, we develop and automate the application of a set of previously unknown design principles that now includes a multilayer design for closed and curved DNA nanostructures to resolve past obstacles in shape selection, yield, mechanical rigidity, and accessibility.

View Article and Find Full Text PDF

We present here the combination of experimental and computational modeling tools for the design and characterization of protein-DNA hybrid nanostructures. Our work incorporates several features in the design of these nanostructures: (1) modeling of the protein-DNA linker identity and length; (2) optimizing the design of protein-DNA cages to account for mechanical stresses; (3) probing the incorporation efficiency of protein-DNA conjugates into DNA nanostructures. The modeling tools were experimentally validated using structural characterization methods like cryo-TEM and AFM.

View Article and Find Full Text PDF

Francisella tularensis is an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable.

View Article and Find Full Text PDF

Artemis nuclease and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are key components in nonhomologous DNA end joining (NHEJ), the major repair mechanism for double-strand DNA breaks. Artemis activation by DNA-PKcs resolves hairpin DNA ends formed during V(D)J recombination. Artemis deficiency disrupts development of adaptive immunity and leads to radiosensitive T- B- severe combined immunodeficiency (RS-SCID).

View Article and Find Full Text PDF

Methods that allow the study of the structure of proteins in complex with nanomaterials promise to enhance our understanding of how biological molecules interface with inorganic materials. We used single-particle cryo-electron microscopy (cryo-EM) to demonstrate the potential for cryo-EM analysis to reveal structural details of protein-nanoparticle complexes. Two protein-nanomaterial complexes, namely, GroEL bound to platinum nanoparticles (GroEL-PtNP) and ferritin bound to an iron oxide nanoparticle, were used as model samples.

View Article and Find Full Text PDF

Yeast Cadmium Factor 1 (Ycf1) sequesters heavy metals and glutathione into the vacuole to counter cell stress. Ycf1 belongs to the ATP binding cassette C-subfamily (ABCC) of transporters, many of which are regulated by phosphorylation on intrinsically-disordered domains. The regulatory mechanism of phosphorylation is still poorly understood.

View Article and Find Full Text PDF

Electron crystallography is a powerful tool for high-resolution structure determination. Macromolecules such as soluble or membrane proteins can be grown into highly ordered two-dimensional (2D) crystals under favorable conditions. The quality of the grown 2D crystals is crucial to the resolution of the final reconstruction via 2D image processing.

View Article and Find Full Text PDF

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT.

View Article and Find Full Text PDF

Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth's deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynthetic machinery in cyanobacteria to excessive light stress, we isolated a new strain of cyanobacteria, 0216, from the extreme light environment of the Sonoran Desert. Here we report the biochemical characterization and the 2.

View Article and Find Full Text PDF

IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97 with its p47 cofactor and first visualized their structures using single-particle cryo-EM.

View Article and Find Full Text PDF

Metal nanostructures of chiral geometry interacting with light via surface plasmon resonances can produce tailorable optical activity with their structural alterations. However, bottom-up fabrication of arbitrary chiral metal nanostructures with precise size and morphology remains a synthetic challenge. Here we develop a DNA origami-enabled aqueous solution metallization strategy to prescribe the chirality of silver nanostructures in three dimensions.

View Article and Find Full Text PDF

Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage.

View Article and Find Full Text PDF

Infrared spectroscopy is a powerful technique for characterising protein structure. It is now possible to record energy losses corresponding to the infrared region in the electron microscope and to avoid damage by positioning the probe in the region adjacent to the structure being studied. Spectra from bacteriorhodopsin, a protein that is predominately a α helix, and OmpF porin, a protein that is mainly β sheet show significant differences over a spectral range from ∼0.

View Article and Find Full Text PDF

Photosystem I coordinates more than 90 chlorophylls in its core antenna while achieving near perfect quantum efficiency. Low energy chlorophylls (also known as red chlorophylls) residing in the antenna are important for energy transfer dynamics and yield, however, their precise location remained elusive. Here, we construct a chimeric Photosystem I complex in Synechocystis PCC 6803 that shows enhanced absorption in the red spectral region.

View Article and Find Full Text PDF

In higher plants, chloroplast ATP synthase has a unique redox switch on its γ subunit that modulates enzyme activity to limit ATP hydrolysis at night. To understand the molecular details of the redox modulation, we used single-particle cryo-EM to determine the structures of spinach chloroplast ATP synthase in both reduced and oxidized states. The disulfide linkage of the oxidized γ subunit introduces a torsional constraint to stabilize the two β hairpin structures.

View Article and Find Full Text PDF

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The β-adrenergic receptor (β-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by β-ARs, leading to increased heart rate and contractility.

View Article and Find Full Text PDF

The 26S proteasome is specialized for regulated protein degradation and formed by a dynamic regulatory particle (RP) that caps a hollow cylindrical core particle (CP) where substrates are proteolyzed. Its diverse substrates unify as proteasome targets by ubiquitination. We used cryogenic electron microscopy (cryo-EM) to study how human 26S proteasome interacts with M1-linked hexaubiquitin (M1-Ub) unanchored to a substrate and E3 ubiquitin ligase E6AP/UBE3A.

View Article and Find Full Text PDF

Analysis of metal-organic framework (MOF) structure by electron microscopy and electron diffraction offers an alternative to growing large single crystals for high-resolution X-ray diffraction. However, many MOFs are electron beam-sensitive, which can make structural analysis using high-resolution electron microscopy difficult. In this work we use the microcrystal electron diffraction (MicroED) method to collect high-resolution electron diffraction data from a model beam-sensitive MOF, ZIF-8.

View Article and Find Full Text PDF

Nanodiamonds are increasingly used in many areas of science and technology, yet, their colloidal properties remain poorly understood. Here we use direct imaging as well as light and X-ray scattering reveal that purified detonation nanodiamond (DND) particles in an aqueous environment exhibit a self-assembled lace-like network, even without additional surface modification. Such behaviour is previously unknown and contradicts the current consensus that DND exists as mono-dispersed single particles.

View Article and Find Full Text PDF