Walnut rootstocks are commonly used in California orchards to provide resistance to soil-borne pests and diseases. However, little information exists about the impact of commercial rootstock on the common scion's physiological response under drought. This is becoming increasingly important since walnuts are commonly cultivated in semi-arid regions where frequent and severe droughts require efficient water use.
View Article and Find Full Text PDFX-ray micro-computed tomography (X-ray μCT) has enabled the characterization of the properties and processes that take place in plants and soils at the micron scale. Despite the widespread use of this advanced technique, major limitations in both hardware and software limit the speed and accuracy of image processing and data analysis. Recent advances in machine learning, specifically the application of convolutional neural networks to image analysis, have enabled rapid and accurate segmentation of image data.
View Article and Find Full Text PDFSimilar to other cropping systems, few walnut cultivars are used as scion in commercial production. Germplasm collections can be used to diversify cultivar options and hold potential for improving crop productivity, disease resistance and stress tolerance. In this study, we explored the anatomical and biochemical bases of photosynthetic capacity and response to water stress in 11 Juglans regia accessions in the U.
View Article and Find Full Text PDFNanoparticle capping agents are critical for controlling the growth, oxidation state, and final particle size during aqueous synthesis. However, despite the known phytotoxicity of cetyltrimethylammonium bromide (CTAB) to plants, it is used to synthesize metal oxide nanoparticles of uniform size and with mesoporous structure. Among the few studies that have investigated how CTAB influences nanoparticle toxicity, CTAB has never been identified as the primary cause of nanoparticle toxicity in environmental systems; rather nanoparticle surface charge or morphology was identified as the driver of toxicity in environmentally relevant systems.
View Article and Find Full Text PDFWith increasing demand for recycled wastewater for irrigation purposes, there is a need to evaluate the potential for manufactured nanomaterials in waste water to impact crop production and agroecosystems. Copper oxide nanoparticles (CuO NPs) have previously been shown to negatively impact the growth of duckweed (Landoltia punctata) a model aquatic plant consumed by water fowl and widely found in agricultural runoff ditches in temperate climates. However, prior studies involving CuO NP toxicity to duckweed have focused on systems without the presence of dissolved organic matter (DOM).
View Article and Find Full Text PDFEnviron Sci Technol
November 2017
Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices.
View Article and Find Full Text PDF