Publications by authors named "Dennis R Voelker"

Rhinovirus C (RV-C) infection can trigger asthma exacerbations in children and adults, and RV-C-induced wheezing illnesses in preschool children correlate with the development of childhood asthma. Surfactant protein A (SP-A) plays a critical role in regulating pulmonary innate immunity by binding to numerous respiratory pathogens. Mature SP-A consists of multiple isoforms that form the hetero-oligomers of SP-A1 and SP-A2, organized in 18-mers.

View Article and Find Full Text PDF
Article Synopsis
  • - Some viruses, despite being present in saliva and semen, are not mainly transmitted through oral or sexual routes due to the presence of extracellular vesicles (EVs) in these fluids, which can inhibit viral infections.
  • - The study found that these EVs expose a molecule called phosphatidylserine (PS), which plays a crucial role in preventing viruses like Zika from attaching and entering cells by blocking specific receptors they normally use.
  • - While EVs effectively combat a variety of viruses through this mechanism, they do not interfere with certain other viruses like HIV or SARS-CoV-2, explaining why the transmission of these viruses often occurs through different pathways rather than direct human contact.
View Article and Find Full Text PDF

The pulmonary surfactant system of the lung is a lipid and protein complex, which regulates the biophysical properties of the alveoli to prevent lung collapse and the innate immune system in the lung. Pulmonary surfactant is a lipoprotein complex consisting of 90% phospholipids and 10% protein, by weight. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), exist at very high concentrations in the extracellular alveolar compartments.

View Article and Find Full Text PDF

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown.

View Article and Find Full Text PDF

Rhinoviruses (RVs) are major instigators of acute exacerbations of asthma, COPD, and other respiratory diseases. RVs are categorized into three species (RV-A, RV-B, and RV-C), which comprise more than 160 serotypes, making it difficult to develop an effective vaccine. Currently, no effective treatment for RV infection is available.

View Article and Find Full Text PDF

Surfactant Protein-A (SP-A) is an innate immune modulator that regulates a variety of pulmonary host defense functions. We have shown that SP-A is dysfunctional in asthma, which could be partly due to genetic heterogeneity. In mouse models and primary bronchial epithelial cells from asthmatic participants, we evaluated the functional significance of a particular single nucleotide polymorphism of SP-A2, which results in an amino acid substitution at position 223 from glutamine (Q) to lysine (K) within the carbohydrate recognition domain (CRD).

View Article and Find Full Text PDF

Pulmonary surfactant is a mixture of lipids and proteins, consisting of 90% phospholipid, and 10% protein by weight, found predominantly in pulmonary alveoli of vertebrate lungs. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), are present within the alveoli at very high concentrations, and exert anti-inflammatory effects by regulating multiple Toll like receptors (TLR2/1, TLR4, and TLR2/6) by antagonizing cognate ligand-dependent activation. POPG also attenuates LPS-induced lung injury in vivo.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in patients with ARDS. Using mass spectrometry of airspace fluid noninvasively collected from mechanically ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation.

View Article and Find Full Text PDF

The alkylphosphocholine (APC) class of antineoplastic and antiprotozoal drugs, such as edelfosine and miltefosine, are structural mimics of lyso-phosphatidylcholine (lyso-PC), and are inhibitory to the yeast Saccharomyces cerevisiae at low micromolar concentrations. Cytotoxic effects related to inhibition of phospholipid synthesis, induction of an unfolded protein response, inhibition of oxidative phosphorylation, and disruption of lipid rafts have been attributed to members of this drug class, however, the molecular mechanisms of action of these drugs remain incompletely understood. Cytostatic and cytotoxic effects of the APCs exhibit variability with regard to chemical structure, leading to differences in effectiveness against different organisms or cell types.

View Article and Find Full Text PDF

Phosphatidylserine decarboxylases (PSDs) catalyze the conversion of phosphatidylserine (PS) to phosphatidylethanolamine (PE), a critical step in membrane biogenesis and a potential target for development of antimicrobial and anti-cancer drugs. PSD activity has typically been quantified using radioactive substrates and products. Recently, we described a fluorescence-based assay that measures the PSD reaction using distyrylbenzene-bis-aldehyde (DSB-3), whose reaction with PE produces a fluorescence signal.

View Article and Find Full Text PDF

Purpose: Electronic cigarettes (e-cigs) are relatively new devices that allow the user to inhale a heated and aerosolized solution. At present, little is known about their health effects in the human lung, particularly in the small airways (<2 mm in diameter), a key site of airway obstruction and destruction in chronic obstructive pulmonary disease and other acute and chronic lung conditions. The aim of this study was to investigate the effect of e-cigarettes on human distal airway inflammation and remodeling.

View Article and Find Full Text PDF

The lung surfactant proteins are recognized as critical not only for their role in lowering lung surface tension but also in innate host defense. Reports have shown that some asthmatic patients have decreased levels of one member of this protein family in particular, surfactant protein-A (SP-A). Our studies set out to determine the contribution of SP-A to the response of a key effector cytokine in asthma, IL-13.

View Article and Find Full Text PDF

The influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden.

View Article and Find Full Text PDF

Comparisons of infectivity among the clinically important nontuberculous mycobacteria (NTM) species have not been explored in great depth. Rapid-growing mycobacteria, including and , can cause indolent but progressive lung disease. Slow-growing members of the complex are the most common group of NTM to cause lung disease, and molecular approaches can now distinguish between several distinct species of complex including , , , and .

View Article and Find Full Text PDF

Phosphatidylserine decarboxylases (PSDs) catalyze the decarboxylation of phosphatidylserine to generate phosphatidylethanolamine, a critical step in phospholipid metabolism in both prokaryotes and eukaryotes. Most PSDs are membrane-bound, and classical radioisotope-based assays for determining their activity are not suitable for high-throughput drug screening. The finding that the PkPSD from can be purified in a soluble and active form and the recent development of a fluorescence-based distyrylbenzene-bis-aldehyde (DSB-3) assay to measure PSD activity have laid the groundwork for screening chemical libraries for PSD inhibitors.

View Article and Find Full Text PDF

Background: Research in transformed immortalized cell lines indicates the cadherin-related family member 3 (CDHR3) protein serves as a receptor for human rhinovirus (HRV)-C. Similar experiments indicate that the CDHR3 coding variant rs6967330 increases CDHR3 protein surface expression.

Objective: We sought to determine whether CDHR3 is necessary for HRV-C infection of primary airway epithelial cells (AECs) and to identify molecular mechanisms by which CDHR3 variants confer risk for asthma exacerbations.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) coupled to intracellular signaling cascades function as central elements of innate immunity that control transcription of numerous pro-inflammatory genes. Two minor anionic phospholipids present in the pulmonary surfactant complex, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI), antagonize the cognate ligand activation of TLRs 2 and 4. The lipids block recognition of activating ligands by the TLRs, either directly or via the TLR4 coreceptors CD14 and MD2.

View Article and Find Full Text PDF
Article Synopsis
  • R-DIM-P-LF11-322 and DIM-LF11-318 are peptides derived from lactoferricin that show anti-tumor effects on human melanoma, but R-DIM-P-LF11-322 targets cancer cells specifically, while DIM-LF11-318 acts on both cancer and healthy cells.
  • Research indicates that cancer cells expose negatively charged phosphatidylserine (PS) on their surface, which R-DIM-P-LF11-322 binds to, whereas cholesterol can diminish its effectiveness.
  • In contrast, DIM-LF11-318 interacts with PS and other lipids without being influenced by cholesterol, and while R-DIM-P-LF11-322 enters the cancer cells and induces
View Article and Find Full Text PDF

The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by , which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine.

View Article and Find Full Text PDF

Lipid asymmetries between the outer and inner leaflet of the lipid bilayer exist in nearly all biological membranes. Although living cells spend great effort to adjust and maintain these asymmetries, little is known about the biophysical phenomena within asymmetric membranes and their role in cellular function. One reason for this lack of insight into such a fundamental membrane property is the fact that the majority of model-membrane studies have been performed on symmetric membranes.

View Article and Find Full Text PDF

Human rhinovirus (RV), the major cause of the common cold, triggers the majority of acute airway exacerbations in patients with asthma and chronic obstructive pulmonary disease. Nitric oxide, and the related metabolite S-nitrosoglutathione, are produced in the airway epithelium via nitric oxide synthase (NOS) 2 and have been shown to function in host defense against RV infection. We hypothesized that inhibitors of the S-nitrosoglutathione-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), might potentiate the antiviral properties of airway-derived NOS2.

View Article and Find Full Text PDF

Asthma remains one of the most common respiratory diseases in both children and adults affecting up to 10% of the US population. Asthma is characterized by persistent symptoms, airway inflammation, airflow limitation and frequent exacerbations. Eosinophils are a key immune cell present in a large majority of asthmatics and their presence and dysregulation are clinically associated with more severe asthma.

View Article and Find Full Text PDF

Phosphatidylserine decarboxylases (PSDs) are central enzymes in phospholipid metabolism that produce phosphatidylethanolamine (PE) in bacteria, protists, plants, and animals. We developed a fluorescence-based assay for selectively monitoring production of PE in reactions using a maltose-binding protein fusion with PSD (MBP-His-Δ34PkPSD) as the enzyme. The PE detection by fluorescence (λ = 403 nm, λ = 508 nm) occurred after the lipid reacted with a water-soluble distyrylbenzene-bis-aldehyde (DSB-3), and provided strong discrimination against the phosphatidylserine substrate.

View Article and Find Full Text PDF

The biosynthesis of the major acyl carrier Coenzyme A from pantothenic acid (PA) is critical for survival of Plasmodium falciparum within human erythrocytes. Accordingly, a PA analog α-PanAm showed potent activity against blood stage parasites in vitro; however, its efficacy in vivo and its mode of action remain unknown. We developed a new synthesis route for α-PanAm and showed that the compound is highly effective against blood stages of drug-sensitive and -resistant P.

View Article and Find Full Text PDF

Phosphatidylethanolamine (PE) and phosphatidylserine (PS) are ubiquitously expressed and metabolically interconnected glycerophospholipids in eukaryotes and prokaryotes. In Trypanosoma brucei, PE synthesis has been shown to occur mainly via the Kennedy pathway, one of the three routes leading to PE synthesis in eukaryotes, while PS synthesis has not been studied experimentally. We now reveal the importance of T.

View Article and Find Full Text PDF