Publications by authors named "Demetris E Apostolides"

Here, hydrophobic polyisobutylene and hydrophilic poly-(ethylene glycol), both of reasonably high molar masses, have been end-linked, yielding amphiphilic polymer conetwork (APCN) hydrogels that can self-organize in water into well-ordered lamellar structures. The cross-linking of hydrophobic and hydrophilic polymer segments produces networks that typically exhibit sphere-like nanodomains in water and in the bulk, but the orderly interconnection of relatively large and highly incompatible polymers leads to hydrogels that internally assemble into lamellae. This unprecedented result may be attributed to the weak force-field established by the presence of a minimal concentration of homogeneously distributed cross-links in the case of the present system, which must be contrasted to a higher concentration of randomly placed cross-linking points, which destroy long-range ordering in conventional APCN hydrogels.

View Article and Find Full Text PDF

Herein we describe the development of the first amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in DO using small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

We present the development of a platform of well-defined, dynamic covalent amphiphilic polymer conetworks (APCN) based on an α,ω-dibenzaldehyde end-functionalized linear amphiphilic poly(ethylene glycol)--poly(propylene glycol)--poly(ethylene glycol) (PEG--PPG--PEG, Pluronic) copolymer end-linked with a triacylhydrazide oligo(ethylene glycol) triarmed star cross-linker. The developed APCNs were characterized in terms of their rheological (increase in the storage modulus by a factor of 2 with increase in temperature from 10 to 50 °C), self-healing, self-assembling, and mechanical properties and evaluated as a matrix for gel polymer electrolytes (GPEs) in both the stretched and unstretched states. Our results show that water-loaded APCNs almost completely self-mend, self-organize at room temperature into a body-centered cubic structure with long-range order exhibiting an aggregation number of around 80, and display an exceptional room temperature stretchability of ∼2400%.

View Article and Find Full Text PDF

Well-defined dually dynamic hydrogels were prepared by end-linking four-armed poly(ethylene glycol) stars (tetraPEG stars) through two different types of dynamic covalent cross-links, boronates and acylhydrazones, leading to robust, self-healable materials. This required the prior end-functionalization of tetraPEG stars, originally bearing four hydroxyl terminal groups, with glucoronate, acylhydrazide and benzaldehyde groups, resulting in three differently end-functional star polymers. A first type of dually dynamic hydrogel resulted from the combination of the first two differently end-functionalized tetraPEG stars, cross-linked by 4-formylphenyl boronic acid, a small molecule bearing both an aldehyde and a boronic acid group, respectively complementary to the acylhydrazide and glucoronate end-groups of the two above-mentioned tetraPEG stars.

View Article and Find Full Text PDF