Latrophilins are conserved adhesion-type G-protein-coupled receptors associated with embryonic defects and lethality. However, their mechanistic roles and ligands in embryogenesis remain unknown. Here, we identified TOL-1, the sole Toll-like receptor in Caenorhabditis elegans, as a ligand for the C.
View Article and Find Full Text PDFThe Cadherin EGF Laminin G seven-pass G-type receptor subfamily (CELSR/ADGRC) is one of the most conserved among adhesion G protein-coupled receptors and is essential for animal development. The extracellular regions (ECRs) of CELSRs are large with 23 adhesion domains. However, molecular insight into CELSR function is sparsely available.
View Article and Find Full Text PDFAdhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function.
View Article and Find Full Text PDFAdhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function.
View Article and Find Full Text PDFCadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available.
View Article and Find Full Text PDFAdhesion G protein-coupled receptors (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear.
View Article and Find Full Text PDFTeneurins are conserved cell adhesion molecules essential for embryogenesis and neural development in animals. Key to teneurin function is the ability of its extracellular region to form homophilic interactions in cis and/or in trans. However, our molecular understanding of teneurin homophilic interaction remains largely incomplete.
View Article and Find Full Text PDFAdhesion GPCRs (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear.
View Article and Find Full Text PDFAdhesion G protein-coupled receptors (aGPCRs) are cell-surface proteins with large extracellular regions that bind to multiple ligands to regulate key biological functions including neurodevelopment and organogenesis. Modulating a single function of a specific aGPCR isoform while affecting no other function and no other receptor is not trivial. Here, we engineered an antibody, termed LK30, that binds to the extracellular region of the aGPCR ADGRL3, and specifically acts as an agonist for ADGRL3 but not for its isoform, ADGRL1.
View Article and Find Full Text PDFBlocking the interaction between cell-surface receptors and their ligands is a proven therapeutic strategy. Adhesion G protein-coupled receptors (aGPCRs) are key cell-surface receptors that regulate numerous pathophysiological processes, and their large extracellular regions (ECRs) mediate ligand binding and function. The aGPCR GPR56/ADGRG1 regulates central nervous system myelination and melanoma progression by interacting with its ligand, tissue transglutaminase 2 (TG2), but the molecular basis for this interaction is largely undefined.
View Article and Find Full Text PDFThe trans-synaptic interaction of the cell-adhesion molecules teneurins (TENs) with latrophilins (LPHNs/ADGRLs) promotes excitatory synapse formation when LPHNs simultaneously interact with FLRTs. Insertion of a short alternatively-spliced region within TENs abolishes the TEN-LPHN interaction and switches TEN function to specify inhibitory synapses. How alternative-splicing regulates TEN-LPHN interaction remains unclear.
View Article and Find Full Text PDFMany drugs target the extracellular regions (ECRs) of cell-surface receptors. The large and alternatively-spliced ECRs of adhesion G protein-coupled receptors (aGPCRs) have key functions in diverse biological processes including neurodevelopment, embryogenesis, and tumorigenesis. However, their structures and mechanisms of action remain unclear, hampering drug development.
View Article and Find Full Text PDFFront Neurosci
August 2019
Teneurins are a conserved family of cell-surface adhesion molecules that mediate cellular communication, and play key roles in embryonic and neural development. Their mechanisms of action remained unclear due in part to their unknown structures. In recent years, the structures of teneurins have been reported at atomic resolutions and revealed a clear homology to bacterial Tc toxins with no similarity to other eukaryotic proteins.
View Article and Find Full Text PDFAnn N Y Acad Sci
November 2019
The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF).
View Article and Find Full Text PDFTeneurins and latrophilins are both conserved families of cell adhesion proteins that mediate cellular communication and play critical roles in embryonic and neural development. However, their mechanisms of action remain poorly understood. In the past several years, three-dimensional structures of teneurins and latrophilins have been reported at atomic resolutions and revealed distinct protein folds and unique structural features.
View Article and Find Full Text PDFAdhesion G-protein-coupled receptors (aGPCRs) play critical roles in diverse cellular processes in neurobiology, development, immunity, and numerous diseases. The lack of molecular understanding of their activation mechanisms, especially with regard to the transmembrane domains, hampers further studies to facilitate aGPCR-targeted drug development. Latrophilin-1/ADGRL1 is a model aGPCR that regulates synapse formation and embryogenesis, and its mutations are associated with cancer and attention-deficit/hyperactivity disorder.
View Article and Find Full Text PDFDetermining macromolecular structures from X-ray data with resolution worse than 3 Å remains a challenge. Even if a related starting model is available, its incompleteness or its bias together with a low observation-to-parameter ratio can render the process unsuccessful or very time-consuming. Yet, many biologically important macromolecules, especially large macromolecular assemblies, membrane proteins and receptors, tend to provide crystals that diffract to low resolution.
View Article and Find Full Text PDFTeneurins (TENs) are cell-surface adhesion proteins with critical roles in tissue development and axon guidance. Here, we report the 3.1-Å cryoelectron microscopy structure of the human TEN2 extracellular region (ECR), revealing a striking similarity to bacterial Tc-toxins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2017
Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse biological processes, including neurodevelopment and cancer progression. aGPCRs are characterized by large and diverse extracellular regions (ECRs) that are autoproteolytically cleaved from their membrane-embedded signaling domains. Although ECRs regulate receptor function, it is not clear whether ECRs play a direct regulatory role in G-protein signaling or simply serve as a protective cap for the activating "" sequence.
View Article and Find Full Text PDFUnlike conventional G-protein-coupled receptors (GPCRs), adhesion GPCRs (aGPCRs) have large extracellular regions that are autoproteolytically cleaved from their membrane-embedded seven-pass transmembrane helices. Autoproteolysis occurs within the conserved GPCR-Autoproteolysis INducing (GAIN) domain that is juxtaposed to the transmembrane domain and cleaves the last beta strand of the GAIN domain. The other domains of the extracellular region are variable and specific to each aGPCR and are likely involved in adhering to various ligands.
View Article and Find Full Text PDFAdhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse neurobiological processes including brain development, synaptogenesis, and myelination. aGPCRs have large alternatively spliced extracellular regions (ECRs) that likely mediate intercellular signaling; however, the precise roles of ECRs remain unclear. The aGPCR GPR56/ADGRG1 regulates both oligodendrocyte and cortical development.
View Article and Find Full Text PDFFibronectin leucine-rich repeat transmembrane proteins (FLRTs) are cell-adhesion molecules with emerging functions in cortical development and synapse formation. Their extracellular regions interact with latrophilins (LPHNs) to mediate synapse development, and with Uncoordinated-5 (UNC5)/netrin receptors to control the migration of neurons in the developing cortex. Here, we present the crystal structures of FLRT3 in isolation and in complex with LPHN3.
View Article and Find Full Text PDFThe Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively.
View Article and Find Full Text PDFAnn N Y Acad Sci
December 2014
The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation.
View Article and Find Full Text PDF