Publications by authors named "David J Beebe"

Miniaturized biological assays using microfluidics have the potential to enhance assay sensitivity, reduce reagent consumption, and increase throughput. However, challenges to miniaturization include increased platform complexity and increased surface to volume ratios leading to risk of evaporation and analyte loss through surface binding. Exclusive Liquid Repellency (ELR) enables open microfluidic systems that minimize these challenges through an oil phase that protects small aqueous volumes from temperature fluctuation and evaporation while eliminating surface fouling that leads to sample loss.

View Article and Find Full Text PDF

Bone is the most common site of prostate cancer metastasis, leading to significant morbidity, treatment resistance, and mortality. A major challenge in understanding treatment response is the complex, bone metastatic niche. Here, we report the first patient-specific microphysiological system (MPS) to incorporate six primary human stromal cell types found in the metastatic bone niche (mesenchymal stem cells, adipocytes, osteoblasts, osteoclasts, fibroblasts, and macrophages), alongside an endothelial microvessel, and prostate tumor epithelial spheroids in an optimized media that supports their viability and phenotype.

View Article and Find Full Text PDF

Background: Culturing neuronal cells in vitro, especially at smaller scales with reduced media volumes, has been challenging due to the limited proliferation of mature neurons and the inherent high sensitivity of neuronal cells to environmental fluctuations.

New Method: In this study, we report a neuronal cell culture method that leverages oil overlay and an autonomously regulated oxygen microenvironment (AROM), in which primary rat cortical cells and human neural progenitor cells (NPCs) were cultured in standard well plates with an oil overlay on top of the media layer. The oil overlay prevents evaporation and achieves in vivo-like oxygen concentrations without the use of glove boxes or hypoxic chambers.

View Article and Find Full Text PDF

Persistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging.

View Article and Find Full Text PDF

Leukocytes forge paths through interstitial spaces by exerting forces to overcome confining mechanical pressures provided by surrounding cells. While such mechanical cues regulate leukocyte motility, engineering an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, microchannels are constructed with a liquid-liquid interface that exerts confining pressures similar to cells in tissues, and thus, is deformable by cell-generated forces.

View Article and Find Full Text PDF

Oral transmission of parasites via environmentally resistant cyst stages in contaminated food or water is a common route of human infection, but there are no effective vaccines available for any enteric parasitic infection. Our knowledge of parasite cyst stage conversion and interaction with the intestinal tract is limited. Here, we investigate infection dynamics of Toxoplasma gondii cyst-stage in murine jejunum and human intestinal microphysiological systems.

View Article and Find Full Text PDF

Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report the formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure.

View Article and Find Full Text PDF

Persistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage, as observed in diseases characterized by influx of neutrophils such as atherosclerosis and non-healing wounds. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging.

View Article and Find Full Text PDF

Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging.

View Article and Find Full Text PDF

Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated "co-zorbs," that are distinguished by a core-shell structure.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells, and extracellular matrix (ECM). However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Here, we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated ECM bridge to elucidate how naive primary neutrophils respond to tumor cells.

View Article and Find Full Text PDF

There is an ongoing need to do more with less and provide highly multiplexed analysis from limited sample volumes. Improved "sample sparing" assays would have a broad impact across pediatric and other rare sample type studies in addition to enabling sequential sampling. This capability would advance both clinical and basic research applications.

View Article and Find Full Text PDF

Endothelial dysfunction is a critical feature of acute respiratory distress syndrome (ARDS) associated with higher disease severity and worse outcomes. Preclinical in vivo models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses and heterogeneity of human host responses. Use of microphysiological systems (MPS) to investigate lung endothelial function may shed light on underlying mechanisms and targeted treatments for ARDS.

View Article and Find Full Text PDF

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable.

View Article and Find Full Text PDF

Functional assessment of endothelium serves as an important indicator of vascular health and is compromised in vascular disorders including hypertension, atherosclerosis, and preeclampsia. Endothelial dysfunction in these cases is linked to dysregulation of the immune system involving both changes to immune cells and increased secretion of inflammatory cytokines. Herein, we utilize a well-established microfluidic device to generate a 3-dimensional vascular microphysiological system (MPS) consisting of a tubular blood vessel lined with human umbilical vein endothelial cells (HUVECs) to evaluate endothelial function measured endothelial permeability and Ca signaling.

View Article and Find Full Text PDF

Unlabelled: is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, he itchhikers f the hizosphere (THOR), we determined the effects of colonization on the fitness of in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization.

View Article and Find Full Text PDF

Under-oil open microfluidic system, utilizing liquid-liquid boundaries for confinements, offers inherent advantages including clogging-free flow channels, flexible access to samples, and adjustable gas permeation, making it well-suited for studying multi-phase chemical reactions that are challenging for closed microfluidics. However, reports on the novel system have primarily focused on device fabrication and functionality demonstrations within biology, leaving their application in broader chemical analysis underexplored. Here, we present a visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions with Raman spectroscopy.

View Article and Find Full Text PDF

While the exquisite sensitivity of neutrophils enables their rapid response to infection in vivo; this same sensitivity complicates the ex vivo study of neutrophils. Handling of neutrophils ex vivo is fraught with unwanted heterogeneity and alterations that can diminish the reproducibility of assays and limit what biological conclusions can be drawn. There is a need to better understand the influence of ex vivo procedures on neutrophil behavior to guide improved protocols for ex vivo neutrophil assessment to improve inter/intra-experimental variability.

View Article and Find Full Text PDF

Neutrophil-directed motility is necessary for host defense, but its dysregulation can also cause collateral tissue damage. Actinopathies are monogenic disorders that affect the actin cytoskeleton and lead to immune dysregulation. Deficiency in ARPC1B, a component of the Arp2/3 complex, results in vascular neutrophilic inflammation; however, the mechanism remains unclear.

View Article and Find Full Text PDF

Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g.

View Article and Find Full Text PDF

Acute respiratory distress syndrome due to non-pulmonary causes exhibits prominent endothelial activation which is challenging to assess in critically ill patients. Preclinical models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses. Use of microphysiological systems (MPS) offer improved fidelity to human biological responses and better predict pharmacological responses than traditional culture.

View Article and Find Full Text PDF

Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development.

View Article and Find Full Text PDF

Biological tissues are highly organized structures where spatial-temporal gradients (e.g., nutrients, hypoxia, cytokines) modulate multiple physiological and pathological processes including inflammation, tissue regeneration, embryogenesis, and cancer progression.

View Article and Find Full Text PDF