Publications by authors named "David D Schlaepfer"

Focal adhesion kinase (FAK) and the related tyrosine kinase PYK2 are signaling and scaffolding proteins co-expressed in endothelial cells (ECs) that regulate blood vessel function and tumor growth. As FAK-PYK2 share overlapping cellular roles, we generated PYK2 FAK mice with tamoxifen-inducible EC-specific Cre expression. EC FAK inactivation in PYK2 but not PYK2 mice led to increased heart and lung mass, vascular leakage, and created a tumor microenvironment that was repressive to syngeneic melanoma, breast, and lung carcinoma implanted tumor growth.

View Article and Find Full Text PDF

Abstract: Tumor chemotherapy resistance arises frequently and limits high-grade serous ovarian cancer (HGSOC) patient survival. Focal adhesion kinase (FAK) is an intracellular protein–tyrosine kinase encoded by PTK2, a gene that is often gained in HGSOC. Canonically, FAK functions at the cell periphery.

View Article and Find Full Text PDF

Unlabelled: Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 FAK mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 background.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression.

View Article and Find Full Text PDF

Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood.

View Article and Find Full Text PDF

Extracellular matrix proteins are associated with metabolically healthy adipose tissue and regulate inflammation, fibrosis, angiogenesis, and subsequent metabolic deterioration. In this study, we demonstrated that transforming growth factor-beta (TGFBI), an extracellular matrix (ECM) component, plays an important role in adipose metabolism and browning during high-fat diet-induced obesity. TGFBI KO mice were resistant to adipose tissue hypertrophy, liver steatosis, and insulin resistance.

View Article and Find Full Text PDF
Article Synopsis
  • High-grade serous ovarian cancer (HGSOC) is a deadly cancer type known for a lack of immune response, indicated by the low presence of tumor infiltrating lymphocytes (TILs) and poor responses to immunotherapy.
  • Research found that active FAK (focal adhesion kinase), which is linked to poor survival rates and prevalent in about 70% of HGSOC cases, correlates with reduced levels of TILs and increased expression of immune checkpoint ligands like CD155.
  • Using a mouse model, the study revealed that inhibiting FAK not only reduced tumor size and associated immune responses but also enhanced the effectiveness of combining FAK inhibitors with TIGIT-blocking antibodies, suggesting a new immunotherapy strategy for H
View Article and Find Full Text PDF

Rationale: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions.

Objective: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated.

Methods And Results: Using SMCs, mouse models, and human atherosclerosis specimens, we found that FAK (focal adhesion kinase) activation elicits SMC dedifferentiation by stabilizing DNMT3A (DNA methyltransferase 3A).

View Article and Find Full Text PDF

Several studies have suggested that extracellular matrix (ECM) remodeling and the microenvironment are tightly associated with adipogenesis and adipose angiogenesis. In the present study, we demonstrated that transforming growth factor-beta induced (TGFBI) suppresses angiogenesis stimulated by adipocyte-conditioned medium (Ad-CM), both in vitro and in vivo. TGFBI knockout (KO) mice exhibited increased numbers of blood vessels in adipose tissue, and blood vessels from these mice showed enhanced infiltration into Matrigel containing Ad-CM.

View Article and Find Full Text PDF

How adhesive forces are transduced and integrated into biochemical signals at focal adhesions (FAs) is poorly understood. Using cells adhering to deformable micropillar arrays, we demonstrate that traction force and FAK localization as well as traction force and Y397-FAK phosphorylation are linearly coupled at individual FAs on stiff, but not soft, substrates. Similarly, FAK phosphorylation increases linearly with external forces applied to FAs using magnetic beads.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is both a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signalling and cell migration, but FAK can also promote cell survival in response to stress. FAK is commonly overexpressed in cancer and is considered a high-value druggable target, with multiple FAK inhibitors currently in development. Evidence suggests that in the clinical setting, FAK targeting will be most effective in combination with other agents so as to reverse failure of chemotherapies or targeted therapies and enhance efficacy of immune-based treatments of solid tumours.

View Article and Find Full Text PDF

Autophagy, particularly with BECN1, has paradoxically been highlighted as tumor promoting in Ras-driven cancers, but potentially tumor suppressing in breast and ovarian cancers. However, studying the specific role of BECN1 at the genetic level is complicated due to its genomic proximity to BRCA1 on both human (chromosome 17) and murine (chromosome 11) genomes. In human breast and ovarian cancers, the monoallelic deletion of these genes is often co-occurring.

View Article and Find Full Text PDF

Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-β-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in , and (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is a significant health issue, being the fifth leading cause of cancer deaths in women, with late-stage disease characterized by tumor spheroids that resist environmental stress.
  • Rgnef, a guanine nucleotide exchange factor, is found to be elevated in late-stage ovarian cancer and is linked to poorer patient prognosis, as its increased levels correlate with decreased survival rates, while its loss is associated with better outcomes.
  • Research indicates that Rgnef is crucial for the formation of ovarian spheroids and tumor growth, and it supports an antioxidant gene signature that protects cancer cells from oxidative stress, highlighting its potential role in cancer progression and therapy.
View Article and Find Full Text PDF

Rationale: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase).

Objective: To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia.

View Article and Find Full Text PDF

Activating mutations in GNAQ/GNA11, encoding Gαq G proteins, are initiating oncogenic events in uveal melanoma (UM). However, there are no effective therapies for UM. Using an integrated bioinformatics pipeline, we found that PTK2, encoding focal adhesion kinase (FAK), represents a candidate synthetic lethal gene with GNAQ activation.

View Article and Find Full Text PDF

Oncogenes provide tumor cells with a growth and survival advantage. Directed therapies targeted to oncogenic mutations (such as V600E) are part of effective late-stage melanoma treatment. However, tumors with V600E mutations, in approximately 10% of colorectal cancer, are generally treatment-insensitive.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase first identified at extracellular matrix and integrin receptor cell adhesion sites and is a key regulator of cell movement. FAK is activated by a variety of stimuli. Herein, we discuss advances in conformational-associated FAK activation and dimerization mechanisms.

View Article and Find Full Text PDF

Identification of specific oncogenic gene changes has enabled the modern generation of targeted cancer therapeutics. In high-grade serous ovarian cancer (OV), the bulk of genetic changes is not somatic point mutations, but rather somatic copy-number alterations (SCNAs). The impact of SCNAs on tumour biology remains poorly understood.

View Article and Find Full Text PDF

Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension.

View Article and Find Full Text PDF

Oxidized low-density lipoprotein (oxLDL) accumulates early in atherosclerosis and promotes endothelial nuclear factor κB (NF-κB) activation, proinflammatory gene expression and monocyte adhesion. Like for other atherogenic factors, oxLDL-induced proinflammatory responses requires integrin-dependent focal adhesion kinase (FAK, also known as PTK2) signaling; however, the mechanism by which FAK mediates oxLDL-dependent NF-κB signaling has yet to be revealed. We now show that oxLDL induces NF-κB activation and VCAM-1 expression through FAK-dependent IκB kinase β (IKKβ, also known as IKBKB) activation.

View Article and Find Full Text PDF

Serous Ovarian Cancers (SOC) are frequently resistant to programmed cell death. However, here we describe that these programmed death-resistant cells are nonetheless sensitive to agents that modulate autophagy. Cytotoxicity is not dependent upon apoptosis, necroptosis, or autophagy resolution.

View Article and Find Full Text PDF

Aberrant activation of Wnt/β-catenin signaling plays an unequivocal role in colorectal cancer, but identification of effective Wnt inhibitors for use in cancer remains a tremendous challenge. New insights into the regulation of this pathway could reveal new therapeutic point of intervention, therefore are greatly needed. Here we report a novel FAK/PYK2/GSK3β(Y216)/β-catenin regulation axis: FAK and PYK2, elevated in adenomas in APC(min/+) mice and in human colorectal cancer tissues, functioned redundantly to promote the Wnt/β-catenin pathway by phosphorylating GSK3β(Y216) to reinforce pathway output-β-catenin accumulation and intestinal tumorigenesis.

View Article and Find Full Text PDF

High-risk neuroblastoma is associated with an overall survival rate of 30-50%. Neuroblastoma-expressed cell adhesion receptors of the integrin family impact cell adhesion, migration, proliferation and survival. Integrin α4 is essential for neural crest cell motility during development, is highly expressed on leukocytes, and is critical for transendothelial migration.

View Article and Find Full Text PDF