Publications by authors named "David A Rusling"

A method has been developed based on proximity labelling that detects the interaction of specific proteins with endogenous triplex DNA sequences formed in live cells — significantly expanding the catalogue of putative proteins that interact with these DNA structures.

View Article and Find Full Text PDF

Here, we present a cross-linking approach to covalently functionalize and stabilize DNA origami structures in a one-pot reaction. Our strategy involves adding nucleotide sequences to adjacent staple strands, so that, upon assembly of the origami structure, the extensions form short hairpin duplexes targetable by psoralen-labeled triplex-forming oligonucleotides bearing other functional groups (pso-TFOs). Subsequent irradiation with UVA light generates psoralen adducts with one or both hairpin staples leading to site-specific attachment of the pso-TFO (and attached group) to the origami with ca.

View Article and Find Full Text PDF

Reconfigurable structures engineered through DNA hybridization and self-assembly offer both structural and dynamic applications in nanotechnology. Here, we have demonstrated that strand displacement of triplex-forming oligonucleotides (TFOs) can be translated to a robust macroscopic DNA crystal by coloring the crystals with covalently attached fluorescent dyes. We show that three different types of triplex strand displacement are feasible within the DNA crystals and the bound TFOs can be removed and/or replaced by (a) changing the pH from 5 to 7, (b) the addition of the Watson-Crick complement to a TFO containing a short toehold, and (c) the addition of a longer TFO that uses the duplex edge as a toehold.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method to effectively assemble complex DNA origami structures by using perfluorinated tags that help guide the pieces together through a process called fluorous-directed recognition.
  • By combining this with traditional Watson-Crick base-pairing techniques, they achieved a significant increase (8 times higher yield) in the creation of specific DNA constructs compared to using each method separately.
  • This new "catch-and-latch" strategy not only boosts assembly efficiency but also reduces the number of DNA sequences needed, making it a cost-effective and influential approach in the field of DNA nanotechnology.
View Article and Find Full Text PDF

The sequence-specific recognition of duplex DNA by unmodified parallel triplex-forming oligonucleotides is restricted to low pH conditions due to a necessity for cytosine protonation in the third strand. This has severely restricted their use as gene-targeting agents, as well as for the detection and/or functionalisation of synthetic or genomic DNA. Here I report that the nucleobase 6-amino-5-nitropyridin-2-one (Z) finally overcomes this constraint by acting as an uncharged mimic of protonated cytosine.

View Article and Find Full Text PDF

DNase I footprints of intermolecular DNA triplexes are often accompanied by enhanced cleavage at the 3'-end of the target site at the triplex-duplex junction. We have systematically studied the sequence dependence of this effect by examining oligonucleotide binding to sites flanked by each base in turn. For complexes with a terminal T.

View Article and Find Full Text PDF

DNA strands can be designed to assemble into stable three-dimensional structures, based on Watson-Crick base pairing rules. The simplest of these is the DNA tetrahedron that is composed of four oligonucleotides. We have re-designed the sequence of a DNA tetrahedron so that it contains a single (AATT) binding site for the minor groove binding ligand Hoechst 33258.

View Article and Find Full Text PDF

DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA.

View Article and Find Full Text PDF

The tensegrity triangle is a robust DNA motif that can self-assemble to generate macroscopic three-dimensional crystals. However, the stability of these crystals is dependent on the high ionic conditions used for crystal growth. Here we demonstrate that a triplex-forming oligonucleotide can be used to direct the specific intercalation, and subsequent photo-cross-linking, of 4,5',8-trimethylpsoralen to single or multiple loci within or between the tiles of the crystal.

View Article and Find Full Text PDF

DNA is a very useful molecule for the programmed self-assembly of 2D and 3D nanoscale objects.1 The design of these structures exploits Watson-Crick hybridization and strand exchange to stitch linear duplexes into finite assemblies.2-4 The dimensions of these complexes can be increased by over five orders of magnitude through self-assembly of cohesive single-stranded segments (sticky ends).

View Article and Find Full Text PDF

DNA is the most exploited biopolymer for the programmed self-assembly of objects and devices that exhibit nanoscale-sized features. One of the most useful properties of DNA nanostructures is their ability to be functionalized with additional non-nucleic acid components. The introduction of such a component is often achieved by attaching it to an oligonucleotide that is part of the nanostructure, or hybridizing it to single-stranded overhangs that extend beyond or above the nanostructure surface.

View Article and Find Full Text PDF

The triplex approach to DNA recognition is exploited to direct covalent inter-strand cross-links to unique locations within a pre-assembled DNA nanostructure. This approach can be used to improve the stability of DNA nanostructures and demonstrates the feasibility of directing other reactive groups to unique locations within these complexes.

View Article and Find Full Text PDF

DNA has been widely exploited for the self-assembly of nanosized objects and arrays that offer the potential to act as scaffolds for the spatial positioning of molecular components with nanometer precision. Methods that allow the targeting of components to specific locations within these structures are therefore highly sought after. Here we report that the triplex approach to DNA recognition, which relies on the specific binding of an oligonucleotide within the major groove of double-helical DNA, can be exploited to recognize specific loci within a DNA double-crossover tile and array, a nanostructure assembled by crossover strand exchange.

View Article and Find Full Text PDF

Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel.

View Article and Find Full Text PDF

Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site.

View Article and Find Full Text PDF

The FokI endonuclease is a monomeric protein with discrete DNA-recognition and catalytic domains. The latter has only one active site so, to cut both strands, the catalytic domains from two monomers associate to form a dimer. The dimer involving a monomer at the recognition site and another from free solution is less stable than that from two proteins tethered to the same DNA.

View Article and Find Full Text PDF

We have studied the formation of DNA triple helices in different sequence contexts and show that, for the most stable triplexes, their apparent stability is affected by the stability of the underlying duplex. For a 14-mer parallel triplex-forming oligonucleotide (generating C(+).GC and T.

View Article and Find Full Text PDF

We have prepared triplex-forming oligonucleotides containing the nucleotide analogue 5-dimethylaminopropargyl deoxyuridine (DMAPdU) in place of thymidine and examined their ability to form intermolecular triple helices by thermal melting and DNase I footprinting studies. The results were compared with those for oligonucleotides containing 5-aminopropargyl-dU (APdU), 5-guanidinopropargyl-dU (GPdU) and 5-propynyl dU (PdU). We find that DMAPdU enhances triplex stability relative to T, though slightly less than the other analogues that bear positive charges (T << PdU < DMAPdU < APdU < GPdU).

View Article and Find Full Text PDF

We have used DNase I footprinting to study the binding strength and DNA sequence selectivity of novel derivatives of the quinoxaline bis-intercalator TANDEM. Replacing the valine residues in the cyclic octadepsipeptide with lysines does not affect the selectivity for TpA but leads to a 50-fold increase in affinity. In contrast, replacing both of the quinoxaline chromophores with naphthalene rings abolishes binding, while changing a single ring decreases the affinity, and footprints are observed at only the best binding sites (especially TATATA).

View Article and Find Full Text PDF

We have examined the kinetics of triple helix formation of oligonucleotides that contain the nucleotide analogue 2'-O-(2-aminoethyl)-5-(3-amino-1-propynyl)uridine (bis-amino-U, BAU), which forms very stable base triplets with AT. Triplex stability is determined by both the number and location of the modifications. BAU-containing oligonucleotides generate triplexes with extremely slow kinetics, as evidenced by 14 degrees C hysteresis between annealing and melting profiles even when heated at a rate as slow as 0.

View Article and Find Full Text PDF

Footprinting is a simple method for assessing the sequence selectivity of DNA-binding ligands. The method is based on the ability of the ligand to protect DNA from cleavage at its binding site. This review describes the use of DNase I and hydroxyl radicals, the most commonly used footprinting probes, in footprinting experiments.

View Article and Find Full Text PDF

We have studied the formation of DNA triple helices at target sites that contain mismatches in the duplex target. Fluorescence melting studies were used to examine a series of parallel triple helices that contain all 64 N.XZ triplet combinations at the centre (where N, X and Z are each of the four natural DNA bases in turn).

View Article and Find Full Text PDF

We have used DNase I footprinting to examine DNA triple helix formation at a 12 base pair oligopurine.oligopyrimidine sequence, using oligonucleotides that contain combinations of 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) and 3-methyl-2-aminopyridine (MeP) in place of T and C, respectively. This combination acts cooperatively to enable high affinity triple helix formation at physiological pH.

View Article and Find Full Text PDF

We have achieved recognition of all 4 bp by triple helix formation at physiological pH, using triplex-forming oligonucleotides that contain four different synthetic nucleotides. BAU [2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine] recognizes AT base pairs with high affinity, (Me)P (3-methyl-2 aminopyridine) binds to GC at higher pHs than cytosine, while (A)PP (6-(3-aminopropyl)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one) and S [N-(4-(3-acetamidophenyl)thiazol-2-yl-acetamide)] bind to CG and TA base pairs, respectively. Fluorescence melting and DNase I footprinting demonstrate successful triplex formation at a 19mer oligopurine sequence that contains two CG and two TA interruptions.

View Article and Find Full Text PDF

Substituted 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues have been synthesised from 5-alkynyl-uridine derivatives, incorporated into triplex forming oligonucleotides (TFOs) and found to selectively bind CG inversions with enhanced affinity compared to T.

View Article and Find Full Text PDF