Genes (Basel)
November 2024
Background/objectives: High-throughput single-cell RNA sequencing (scRNA-seq) workflows produce libraries that demand extensive sequencing. However, standard next-generation sequencing (NGS) methods remain expensive, contributing to the high running costs of single-cell experiments and often negatively affecting the sample numbers and statistical strength of such projects. In recent years, a plethora of new sequencing technologies have become available to researchers through several manufacturers, often providing lower-cost alternatives to standard NGS.
View Article and Find Full Text PDFMicroglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1r mouse model. In juvenile Csf1r mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types.
View Article and Find Full Text PDFMicroglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries.
View Article and Find Full Text PDFMyelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans.
View Article and Find Full Text PDFMacrophages reside within the diverse anatomical compartments of the central nervous system (CNS). Within each compartment, these phagocytes are exposed to unique combinations of niche signals and mechanical stimuli that instruct their tissue-specific identities. Whereas most CNS macrophages are tissue-embedded, the macrophages of the cerebrospinal fluid (CSF) system are bathed in an oscillating liquid.
View Article and Find Full Text PDFThe central nervous system hosts parenchymal macrophages, known as microglia, and non-parenchymal macrophages, collectively termed border-associated macrophages (BAMs). Microglia, but not BAMs, were reported to be absent in mice lacking a conserved enhancer: the -intronic regulatory element (FIRE). However, it is unknown whether FIRE deficiency also impacts BAM arrival and/or maintenance Here, we show that macrophages in the ventricular system of the brain, including Kolmer's epiplexus macrophages, are absent in mice.
View Article and Find Full Text PDFHuntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions.
View Article and Find Full Text PDFFront Physiol
October 2017
The adult kidney hosts tissue-resident macrophages that can cause, prevent, and/or repair renal damage. Most of these macrophages derive from embryonic progenitors that colonize the kidney during its development and proliferate throughout adulthood. Although the precise origins of kidney macrophages remain controversial, recent studies have revealed that embryonic macrophage progenitors initially migrate from the yolk sac, and later from the fetal liver, into the developing kidney.
View Article and Find Full Text PDFWe present a strategy for increasing the anatomical realism of organoids by applying asymmetric cues to mimic spatial information that is present in natural embryonic development, and demonstrate it using mouse kidney organoids. Existing methods for making kidney organoids in mice yield developing nephrons arranged around a symmetrical collecting duct tree that has no ureter. We use transplant experiments to demonstrate plasticity in the fate choice between collecting duct and ureter, and show that an environment rich in BMP4 promotes differentiation of early collecting ducts into uroplakin-positive, unbranched, ureter-like epithelial tubules.
View Article and Find Full Text PDFBackground: During murine kidney development, new cortical blood vessels form and pattern in cycles that coincide with cycles of collecting duct branching and the accompanying splitting of the cap mesenchyme (nephron progenitor cell populations that "cap" collecting duct ends). At no point in the patterning cycle do blood vessels enter the cap mesenchyme. We hypothesized that the exclusion of blood vessels from the cap mesenchyme may be controlled, at least in part, by an anti-angiogenic signal expressed by the cap mesenchyme cells.
View Article and Find Full Text PDFThe renal vasculature is required for blood filtration, blood pressure regulation, and pH maintenance, as well as other specialised kidney functions. Yet, despite its importance, many aspects of its development are poorly understood. To provide a detailed spatiotemporal analysis of kidney vascularisation, we collected images of embryonic mouse kidneys at various developmental time-points.
View Article and Find Full Text PDF