Publications by authors named "Danning Fu"

Air pollution, global warming, and energy insecurity are three major problems facing the world. This study first examines whether 149 countries can transition 100% of their business-as-usual (BAU) all-sector energy to electricity and heat obtained from 100% wind-water-solar (WWS) sources to solve these problems. WWS eliminates energy-related air pollution deaths and CO-equivalent emissions while reducing end-use energy needs by ∼54.

View Article and Find Full Text PDF

Purpose: To establish an artificial intelligence (AI)-empowered multistep integrated (MSI) radiation therapy (RT) workflow for patients with nasopharyngeal carcinoma (NPC) and evaluate its feasibility and clinical performance.

Methods And Materials: Patients with NPC scheduled for MSI RT workflow were prospectively enrolled. This workflow integrates RT procedures from computed tomography (CT) scan to beam delivery, all performed with the patient on the treatment couch.

View Article and Find Full Text PDF
Article Synopsis
  • * The creation of a double network regenerated cellulose separator (DN-RCS) using a polymer cross-linking system enhances mechanical strength and porosity compared to pure regenerated cellulose separators (RCS).
  • * DN-RCS shows high ionic conductivity and improved cycling stability and rate performance in battery tests, suggesting a promising future for cellulose-based battery separators.
View Article and Find Full Text PDF

Flexible pressure sensors (FPSs) based on biomass materials have gained considerable attention for their potential in wearable electronics, human-machine interaction, and environmental protection. Herein, flexible silver nanowire-dual-cellulose paper (SNdCP) containing common cellulose fibers, cellulose nanofibers (CNFs), and silver nanowires (AgNWs) for FPSs was assembled by a facile papermaking strategy. Compared with bacterial cellulose (BC) and cellulose nanocrystals (CNCs), CNFs possess better dimensions and reinforcement, which enables the composite paper to exhibit better mechanical properties (tensile stress of 164.

View Article and Find Full Text PDF

Flexible conductive hydrogels (FCHs) have attracted widespread interest as versatile monoliths that can be intricately integrated with various ingredients boasting multiple functionalities. The chemicophysical properties of FCHs cover a wide range, which significantly vary in their building blocks. However, achieving both favorable mechanical strength and high conductivity simultaneously through a facile approach remains a challenge.

View Article and Find Full Text PDF

The colored and high-saline effluents during the traditional dyeing process poses serious environmental challenge. In our study, an eco-friendly cationic cellulose nano-fiber/chitosan (CCNF/CS) binary versatile auxiliary was designed for the neutral salt-free dyeing and physical enhancement of paper by mixing with pulp simply. Profiting from the rich cationic binding sites of CCNF/CS (Charge density: 3749.

View Article and Find Full Text PDF

With the increased demand for green and sustainable development, the research of advanced biomass-based carbon dots (CDs) has drawn growing attention. Herein, a one-step green solvent integration strategy-assisted solvothermal method to preparing CDs from hydrolyzed lignin and ethylenediamine (EDA) in formamide (FA) was developed. The Schiff reaction between FA and EDA contributes to the formation of -C-N groups, further inducing the high photoluminescence quantum yield (up to 42.

View Article and Find Full Text PDF

Bacterial cellulose (BC) lithium-ion batteries separators possess outstanding thermal dimensional stability and electrolyte wettability, but theirs nano diameter and high aspect ratio lead to poor porosity and pore size uniformity of dense BC separators, limiting the Li transmission in the separators. In this paper, chitosan (CS) with different molecular weight was grafted onto BC (named OBCS), and a high-performance OBCS separator with excellent pore structure and tunable pore size was prepared by simple suction filtration. The spacing and dispersion uniformity of OBCS were improved by the CS grafted on BC surface, thus improving the pore structure and porosity of OBCS separators.

View Article and Find Full Text PDF

To date, flexible pressure sensors built on silver nanowires (AgNWs) have attracted tremendous attention, owing to their versatile applications in wearable, human-interactive, health-monitoring devices. Cellulose and its derivatives, which show great promise in serving flexible pressure sensors as the desired substrate due to their natural abundance, biocompatibility, easy processibility, and low costs. Herein, we reported a rational strategy to design a silver nanowires-dual-cellulose conductive paper.

View Article and Find Full Text PDF