Our understanding of how photosynthetic capacity varies among C species and across growth and measurement conditions remains limited. We collated 1696 CO response curves of net CO assimilation rate (A/C curves) from C species grown and measured at various environmental conditions and used these data to estimate the apparent maximum carboxylation activity of phosphoenolpyruvate carboxylase (V) and CO-saturated net photosynthetic rate (A), two key parameters describing photosynthetic capacity. We examined how V and A vary with species-specific traits, growth and measurement conditions.
View Article and Find Full Text PDFIncreasing atmospheric CO2 concentrations fuel global warming, with boreal regions warming at a faster rate than many other areas. Boreal forests are an important component of the global carbon cycle, yet we have little data on photosynthetic responses of boreal trees to elevated CO2 (EC) and warming. We grew seedlings of five widespread North American boreal tree species (from Betula, Larix, Picea, and Pinus) under current (410 ppm) or elevated (750 ppm) CO2 and either ambient (+0 °C) or increased (+4 °C or +8 °C) temperature, then measured photosynthetic traits over a range of leaf temperatures.
View Article and Find Full Text PDFIt has been 60 years since the discovery of C photosynthesis, an event that rewrote our understanding of plant adaptation, ecosystem responses to global change, and global food security. Despite six decades of research, one aspect of C photosynthesis that remains poorly understood is how the pathway fits into the broader context of adaptive trait spectra, which form our modern view of functional trait ecology. The C CO-concentrating mechanism supports a general C plant phenotype capable of fast growth and high resource-use efficiencies.
View Article and Find Full Text PDFPlant metabolism faces a challenge of investing enough enzymatic capacity to a pathway without overinvestment. As it takes energy and resources to build, operate, and maintain enzymes, there are benefits and drawbacks to accurately matching capacity to the pathway influx. The relationship between functional capacity and physiological load could be explained through symmorphosis, which would quantitatively match enzymatic capacity to pathway influx.
View Article and Find Full Text PDFPhotosynthetic acclimation to both warming and elevated CO of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO on photosynthetic capacity (V and J) in mature trees of two North American boreal conifers, tamarack and black spruce. We show that V and J at a standard temperature of 25°C did not change with warming, while V and J at their thermal optima (T) and growth temperature (T) increased.
View Article and Find Full Text PDFSci Total Environ
January 2024
The world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees.
View Article and Find Full Text PDFWarming shifts the thermal optimum of net photosynthesis (T) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO) conditions. It is unclear whether shifts in T of field-grown trees will keep pace with the temperatures predicted for the 21 century under elevated atmospheric CO concentrations.
View Article and Find Full Text PDFLight respiration (RL) is an important component of plant carbon balance and a key parameter in photosynthesis models. RL is often measured using the Laisk method, a gas exchange technique that is traditionally employed under steady-state conditions. However, a nonsteady-state dynamic assimilation technique (DAT) may allow for more rapid Laisk measurements.
View Article and Find Full Text PDFRespiration plays a key role in the terrestrial carbon cycle and is a fundamental metabolic process in all plant tissues and cells. We review respiration from the perspective of plants that grow in their natural habitat and how it is influenced by wide-ranging elements at different scales, from metabolic substrate availability to shifts in climate. Decades of field-based measurements have honed our understanding of the biological and environmental controls on leaf, root, stem, and whole-organism respiration.
View Article and Find Full Text PDFProjected rises in atmospheric CO concentration and minimum night-time temperatures may have important effects on plant carbon metabolism altering the carbon balance of the only two vascular plant species in the Antarctic Peninsula. We assessed the effect of nocturnal warming (8/5 °C vs. 8/8 °C day/night) and CO concentrations (400 ppm and 750 ppm) on gas exchange, non-structural carbohydrates, two respiratory-related enzymes, and mitochondrial size and number in two species of vascular plants.
View Article and Find Full Text PDFGlob Chang Biol
February 2022
The Arctic-Boreal Region (ABR) has a large impact on global vegetation-atmosphere interactions and is experiencing markedly greater warming than the rest of the planet, a trend that is projected to continue with anticipated future emissions of CO . The ABR is a significant source of uncertainty in estimates of carbon uptake in terrestrial biosphere models such that reducing this uncertainty is critical for more accurately estimating global carbon cycling and understanding the response of the region to global change. Process representation and parameterization associated with gross primary productivity (GPP) drives a large amount of this model uncertainty, particularly within the next 50 years, where the response of existing vegetation to climate change will dominate estimates of GPP for the region.
View Article and Find Full Text PDFWarming nights are correlated with declining wheat growth and yield. As a key determinant of plant biomass, respiration consumes O2 as it produces ATP and releases CO2 and is typically reduced under warming to maintain metabolic efficiency. We compared the response of respiratory O2 and CO2 flux to multiple night and day warming treatments in wheat leaves and roots, using one commercial (Mace) and one breeding cultivar grown in controlled environments.
View Article and Find Full Text PDFThe temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early-successional species Harungana montana and the late-successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.
View Article and Find Full Text PDFClimate warming is increasing the frequency of climate-induced tree mortality events. While drought combined with heat is considered the primary cause of this mortality, little is known about whether moderately high temperatures alone can induce mortality, or whether rising CO2 would prevent mortality at high growth temperatures. We grew tamarack (Larix laricina) under ambient (400 p.
View Article and Find Full Text PDFGlob Chang Biol
July 2021
Climate warming will alter photosynthesis and respiration not only via direct temperature effects on leaf biochemistry but also by increasing atmospheric dryness, thereby reducing stomatal conductance and suppressing photosynthesis. Our knowledge on how climate warming affects these processes is mainly derived from seedlings grown under highly controlled conditions. However, little is known regarding temperature responses of trees growing under field settings.
View Article and Find Full Text PDFPredicted increases in future global temperatures require us to better understand the dimensions of heat stress experienced by plants. Here we highlight four key areas for improving our approach towards understanding plant heat stress responses. First, although the term 'heat stress' is broadly used, that term encompasses heat shock, heat wave and warming experiments, which vary in the duration and magnitude of temperature increase imposed.
View Article and Find Full Text PDFEarth is currently undergoing a global increase in atmospheric vapor pressure deficit (VPD), a trend which is expected to continue as climate warms. This phenomenon has been associated with productivity decreases in ecosystems and yield penalties in crops, with these losses attributed to photosynthetic limitations arising from decreased stomatal conductance. Such VPD increases, however, have occurred over decades, which raises the possibility that stomatal acclimation to VPD plays an important role in determining plant productivity under high VPD.
View Article and Find Full Text PDFRising atmospheric carbon dioxide (CO ) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO and warming.
View Article and Find Full Text PDFFunct Plant Biol
February 2020
Low atmospheric CO2 conditions prevailed for most of the recent evolutionary history of plants. Such concentrations reduce plant growth compared with modern levels, but low-CO2 effects on plant performance may also be affected by nitrogen availability, since low leaf nitrogen decreases photosynthesis, and CO2 concentrations influence nitrogen assimilation. To investigate the influence of N availability on plant performance at low CO2, we grew Elymus canadensis at ambient (~400 μmol mol-1) and subambient (~180 μmol mol-1) CO2 levels, under four N-treatments: nitrate only; ammonium only; a full and a half mix of nitrate and ammonium.
View Article and Find Full Text PDFPlant Cell Environ
November 2019
The ability to transport water through tall stems hydraulically limits stomatal conductance (g ), thereby constraining photosynthesis and growth. However, some plants are able to minimize this height-related decrease in g , regardless of path length. We hypothesized that kudzu (Pueraria lobata) prevents strong declines in g with height through appreciable structural and hydraulic compensative alterations.
View Article and Find Full Text PDF