Nitrate (NO ) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO deficiency to systematically approach the impact of PIPs under these conditions.
View Article and Find Full Text PDFIn response to unilateral blue light illumination, roots of some plant species such as Arabidopsis thaliana exhibit negative phototropism (bending away from light), which is important for light avoidance in nature. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 are essential for positive hydrotropism (i.e.
View Article and Find Full Text PDFA key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Fresh water is an increasingly scarce resource for agriculture. Plant roots mediate water uptake from the soil and have developed a number of adaptive traits such as hydrotropism to aid water foraging. Hydrotropism modifies root growth to respond to a water potential gradient in soil and grow towards areas with a higher moisture content.
View Article and Find Full Text PDFPlants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap.
View Article and Find Full Text PDFThe Casparian strip is an important barrier regulating water and nutrient uptake into root tissues. New research reveals two peptide signals and their co-receptors play critical roles patterning and maintaining barrier integrity.
View Article and Find Full Text PDFHydrotropism is a genuine response of roots to a moisture gradient to avoid drought. An experimental system for the induction of hydrotropic root response in petri dishes was designed by pioneering groups in the field. This system uses split agar plates containing an osmolyte only in a region of the plate in order to generate a water potential gradient.
View Article and Find Full Text PDFAbscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS for root ABA signaling.
View Article and Find Full Text PDFThe endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis.
View Article and Find Full Text PDFMembers of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6.
View Article and Find Full Text PDFJ Biol Chem
December 2010
The Arabidopsis di- and tripeptide transporters AtPTR1 and AtPTR5 were expressed in Xenopus laevis oocytes, and their selectivity and kinetic properties were determined by voltage clamping and by radioactive uptake. Dipeptide transport by AtPTR1 and AtPTR5 was found to be electrogenic and dependent on protons but not sodium. In the absence of dipeptides, both transporters showed proton-dependent leak currents that were inhibited by Phe-Ala (AtPTR5) and Phe-Ala, Trp-Ala, and Phe-Phe (AtPTR1).
View Article and Find Full Text PDFCOMATOSE (CTS), the plant homologue of Adrenoleukodystrophy protein, is a full length ABC transporter localized in peroxisomes. In a recent article, we reported that the two-nucleotide binding domains of CTS are not functionally equivalent in vivo. Mutations in conserved residues in the Walker A (K487A) and B (D606N) motifs of NBD1 resulted in a null phenotype, whereas identical mutations in the equivalent residues in NBD2 (K1136A and D1276N) had no detectable effect.
View Article and Find Full Text PDFCOMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal beta-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein.
View Article and Find Full Text PDFTransporters for di- and tripeptides belong to the large and poorly characterized PTR/NRT1 (peptide transporter/nitrate transporter 1) family. A new member of this gene family, AtPTR5, was isolated from Arabidopsis (Arabidopsis thaliana). Expression of AtPTR5 was analyzed and compared with tissue specificity of the closely related AtPTR1 to discern their roles in planta.
View Article and Find Full Text PDFAfter-ripening (AR) is a time and environment regulated process occurring in the dry seed, which determines the germination potential of seeds. Both metabolism and perception of the phytohormone abscisic acid (ABA) are important in the initiation and maintenance of dormancy. However, molecular mechanisms that regulate the capacity for dormancy or germination through AR are unknown.
View Article and Find Full Text PDFCOMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility.
View Article and Find Full Text PDFFor the efficient translocation of organic nitrogen, small peptides of two to three amino acids are posited as an important alternative to amino acids. A new transporter mediating the uptake of di- and tripeptides was isolated from Arabidopsis thaliana by heterologous complementation of a peptide transport-deficient Saccharomyces cerevisiae mutant. AtPTR1 mediated growth of S.
View Article and Find Full Text PDFTwo peptide transporter (PTR) homologs have been isolated from developing seeds of faba bean (Vicia faba). VfPTR1 was shown to be a functional peptide transporter through complementation of a yeast mutant. Expression patterns of VfPTR1 and VfPTR2 as well as of the amino acid permease VfAAP1 (Miranda et al.
View Article and Find Full Text PDF