Unlabelled: Resistance to venetoclax (VEN)-based therapy in acute myeloid leukemia (AML) includes genetic (i.e., mutations in N/KRAS, FLT3-ITD, TP53) and phenotypic (i.
View Article and Find Full Text PDFThis editorial highlights the significant clinical challenges and poor outcomes faced by patients with secondary AML after prior hypomethylating agent therapy (HMA-sAML), underscoring the urgent need for novel treatments. The authors emphasize that current standard therapies remain inadequate, calling for clinical trials tailored specifically to address the unique biological complexity and therapeutic resistance observed in this patient population
View Article and Find Full Text PDFThe European LeukemiaNet 2024 risk-stratification guidelines for patients with acute myeloid leukemia receiving hypomethylating agents combined with venetoclax were recently published. This analysis demonstrates reclassification and incorporation of new gene mutations in the present model can further improve and individualize prognostication.
View Article and Find Full Text PDFChimeric antigen receptor T cell (CAR-T) therapy is an innovative immunotherapeutic approach that utilizes genetically modified T-cells to eliminate cancer cells using the specificity of a monoclonal antibody (mAb) coupled to the potent cytotoxicity of the T-lymphocyte. CAR-T therapy has yielded significant improvements in relapsed/refractory B-cell malignancies. Given these successes, CAR-T has quickly spread to other hematologic malignancies and is being increasingly explored in solid tumors.
View Article and Find Full Text PDFFimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria.
View Article and Find Full Text PDFMacromol Biosci
September 2022
There is a growing realization that 3D cell culture better mimics complex in vivo environments than 2D, lessening aberrant cellular behaviors and ultimately improving the outcomes of experiments. Chemically crosslinked hydrogels which imitate natural extracellular matrix (ECM) are proven cell culture platforms, but the encapsulation of cells within these hydrogel networks requires bioorthogonal crosslinking chemistries which can be cytotoxic, synthetically demanding, and costly. Capsular antigen fragment 1 (Caf1) is a bacterial, polymeric, fimbrial protein which can be genetically engineered to imitate ECM.
View Article and Find Full Text PDFThe pathogenic bacterium Yersina pestis is protected from macrophage engulfment by a capsule like antigen, F1, formed of long polymers of the monomer protein, Caf1. However, despite the importance of this pathogen, the mechanism of protection was not understood. Here we demonstrate how F1 protects the bacteria from phagocytosis.
View Article and Find Full Text PDFCapsular antigen fragment 1 (Caf1) is an oligomeric protein consisting of 15 kDa monomeric subunits that are non-covalently linked through exceptionally strong and kinetically inert interactions into a linear polymer chain. It has been shown that after its thermal depolymerisation into unfolded monomeric subunits, Caf1 is able to efficiently repolymerise in vitro to reform its polymeric structure. However, little is known about the nature of the repolymerisation process.
View Article and Find Full Text PDFDemand continues to grow for biomimetic materials able to create well-defined environments for modulating the behaviour of living cells in culture. Here, we describe hydrogels based upon the polymeric bacterial fimbriae protein capsular antigen fragment 1 (Caf1) that presents tunable biological properties for enhanced tissue cell culture applications. We demonstrate how Caf1 hydrogels can regulate cellular functions such as spreading, proliferation and matrix deposition of human dermal fibroblast cells (hDFBs).
View Article and Find Full Text PDFACS Synth Biol
July 2020
Protein engineering is an attractive approach for the self-assembly of nanometer-scale architectures for a range of potential nanotechnologies. Using the versatile chemistry provided by protein folding and assembly, coupled with amino acid side-chain functionality, allows for the construction of precise molecular "protein origami" hierarchical patterned structures for a range of nanoapplications such as stand-alone enzymatic pathways and molecular machines. The surface protein SasG is a rigid, rod-like structure shown to have high mechanical strength due to "clamp-like" intradomain features and a stabilizing interface between the G5 and E domains, making it an excellent building block for molecular self-assembly.
View Article and Find Full Text PDFBackground: Engineered living materials (ELMs) are an exciting new frontier, where living organisms create highly functional materials. In particular, protein ELMs have the advantage that their properties can be manipulated via simple molecular biology. Caf1 is a protein ELM that is especially attractive as a biomaterial on account of its unique combination of properties: bacterial cells export it as a massive, modular, non-covalent polymer which is resistant to thermal and chemical degradation and free from animal material.
View Article and Find Full Text PDFBackground: Thermal regulation of gene expression occurs in many microorganisms, and is mediated via several typical mechanisms. Yersinia pestis is the causative agent of the plague and spreads by zoonotic transfer from fleas to mammalian blood with a concomitant rapid temperature change, from ambient to 37 °C, which induces the expression of capsular antigen (Caf1) that inhibits phagocytosis. Caf1 is formed into long polymeric fimbriae by a periplasmic chaperone (Caf1M) and outer membrane usher (Caf1A).
View Article and Find Full Text PDFMitochondria are highly dynamic organelles that play a central role in multiple cellular processes, including energy metabolism, calcium homeostasis and apoptosis. Miro proteins (Miros) are "atypical" Ras superfamily GTPases that display unique domain architecture and subcellular localisation regulating mitochondrial transport, autophagy and calcium sensing. Here, we present systematic catalytic domain characterisation and structural analyses of human Miros.
View Article and Find Full Text PDFMethods to analyze and compare biomacromolecular surfaces are still in their relative infancy on account of the challenges involved in comparing surfaces computationally. We describe a systems chemistry approach that utilizes polymer-scaffolded dynamic combinatorial libraries to experimentally probe biomacromolecular surfaces in aqueous solution which provides feedback as to the nature of the surfaces, allowing the comparison of three globular proteins and a nucleic acid.
View Article and Find Full Text PDFBiomed Mater
September 2017
The ability to culture cells in three-dimensions has many applications, from drug discovery to wound healing. 3D cell culture methods often require appropriate scaffolds that mimic the cellular environments of different tissue types. The choice of material from which these scaffolds are made is of paramount importance, as its properties will define the manner in which cells interact with the scaffold.
View Article and Find Full Text PDFLin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein-RNA complex are unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2015
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine.
View Article and Find Full Text PDF