Publications by authors named "Dane D Jensen"

Background And Purpose: Migraine is a neurovascular disorder largely mediated by calcitonin gene-related peptide (CGRP). This study explores the role of the nociceptin/orphanin FQ (N/OFQ)-N/OFQ receptor (NOP) system in CGRP-induced periorbital mechanical allodynia (PMA) in mice.

Experimental Approach: Male or female wild type (NOP(+/+)) and NOP receptor knockout (NOP(-/-)) mice and CD-1 mice were used.

View Article and Find Full Text PDF

Chronic pruritus is a major unmet clinical problem affecting one in four adults. G protein-coupled receptors (GPCRs) are key receptors driving itch signaling and are a therapeutic target for itch relief. The endosomal signaling of GPCRs provides new challenges for understanding how GPCR signaling is regulated, how endosomal signaling of GPCRs contributes to disease states like chronic pruritus and opens new targets for therapeutic development.

View Article and Find Full Text PDF
Article Synopsis
  • Oral cancer causes significant pain linked to the activation of protease-activated receptor 2 (PAR) in cancer cells and neurons, contributing to nociception (pain sensation).
  • Researchers found that inhibiting PAR using nanoparticles to deliver the drug AZ3451 is more effective in reversing pain compared to the drug alone, especially in mouse models of oral cancer pain.
  • The study also shows that both the overexpression of the F2RL1 gene in cancer cells and neurons plays a role in pain, and targeting PAR could improve pain management and oral function for patients.
View Article and Find Full Text PDF

Conventionally, nanocarriers are used to regulate the controlled release of therapeutic payloads. Increasingly, they can also be designed to have an intrinsic therapeutic effect. For example, a positively charged nanocarrier can bind damage-associated molecular patterns, inhibiting toll-like receptor (TLR) pathway activation and thus modulating inflammation.

View Article and Find Full Text PDF

Oral cancer pain remains a significant public health concern. Despite the development of improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia, tolerance, and dependence.

View Article and Find Full Text PDF

The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined.

View Article and Find Full Text PDF

Background & Aims: More than half of Crohn's disease patients develop intestinal fibrosis-induced intestinal strictures. Elafin is a human protease inhibitor that is down-regulated in the stricturing intestine of Crohn's disease patients. We investigated the efficacy of elafin in reversing intestinal fibrosis and elucidated its mechanism of action.

View Article and Find Full Text PDF

Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NKR) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NKR antagonist aprepitant-amine for the treatment of chronic pain in mice.

View Article and Find Full Text PDF

Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) regulate many pathophysiological processes and are major therapeutic targets. The impact of disease on the subcellular distribution and function of GPCRs is poorly understood. We investigated trafficking and signaling of protease-activated receptor 2 (PAR) in colitis.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (SCC) pain is more prevalent and severe than pain generated by any other form of cancer. We previously showed that protease-activated receptor-2 (PAR) contributes to oral SCC pain. Cathepsin S is a lysosomal cysteine protease released during injury and disease that can activate PAR.

View Article and Find Full Text PDF

Objective: The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues.

Design: Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments.

View Article and Find Full Text PDF

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability.

View Article and Find Full Text PDF

Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NKR) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain.

View Article and Find Full Text PDF

Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR coupling to Gα, Gα, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR at distinct sites and activate it by biased mechanisms that induce coupling to Gα, but not to Gα or β-arrestins. Because proteases activate PAR by irreversible cleavage, and activated PAR is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR from the Golgi apparatus or synthesis of new receptors by incompletely understood mechanisms.

View Article and Find Full Text PDF

Background & Aims: Mood disorders and constipation are often comorbid, yet their shared etiologies have rarely been explored. The neurotransmitter serotonin (5-HT) regulates central nervous system and enteric nervous system (ENS) development and long-term functions, including gastrointestinal (GI) motility and mood. Therefore, defects in neuron production of 5-HT might result in brain and intestinal dysfunction.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) are conventionally considered to function at the plasma membrane, where they detect extracellular ligands and activate heterotrimeric G proteins that transmit intracellular signals. Consequently, drug discovery efforts have focused on identification of agonists and antagonists of cell surface GPCRs. However, β-arrestin (ARR)-dependent desensitization and endocytosis rapidly terminate G protein signaling at the plasma membrane.

View Article and Find Full Text PDF

Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS).

View Article and Find Full Text PDF

Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis.

View Article and Find Full Text PDF

Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NKR) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NKR in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists.

View Article and Find Full Text PDF

The systemic renin-angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP.

View Article and Find Full Text PDF

Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores.

View Article and Find Full Text PDF

Unlabelled: A challenge in obstetrics is to distinguish pathological symptoms from those associated with normal changes of pregnancy, typified by the need to differentiate whether gestational pruritus of the skin is an early symptom of intrahepatic cholestasis of pregnancy (ICP) or due to benign pruritus gravidarum. ICP is characterized by raised serum bile acids and complicated by spontaneous preterm labor and stillbirth. A biomarker for ICP would be invaluable for early diagnosis and treatment and to enable its differentiation from other maternal diseases.

View Article and Find Full Text PDF