Publications by authors named "Cristina Andreoli"

The Caco-2 in vitro model of the intestinal barrier is a well-established system for the investigation of the intestinal fate of orally ingested chemicals and drugs, and it has been used for over ten years by pharmaceutical industries as a model for absorption in preclinical studies. The Caco-2 model shows a fair correlation with in vivo drug absorption, though some inherent biases remain unresolved. Its main limitation lies in the lack of structural complexity, as it does not replicate the diverse cell types and mucus layer present in the human intestinal epithelium.

View Article and Find Full Text PDF

The toxicity of nanomaterials(NMs) is closely tied to their physicochemical properties, such as size, shape, surface chemistry, stability in biological medium, and state of agglomeration as well to their uptake by cells. Key deficiencies in standardized testing approaches have been identified and tackled in recent years. Within the landscape of new approach methods (NAMs), the aim of this work is to review existing approaches for genotoxicity testing of the NMs under different regulatory domains, with a perspective on the development of NAMs that can solve longstanding difficulties in NMs' risk assessment.

View Article and Find Full Text PDF

The present opinion is the follow-up of the conclusions and recommendations of the Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive relevant to the safety assessment for all age groups. In addition, the risk assessment of silicon dioxide (E 551) for its use in food for infants below 16 weeks of age is performed. Based on the newly available information on the characterisation of the SAS used as E 551 and following the principles of the 2021 EFSA Guidance on Particle-TR, the conventional safety assessment has been complemented with nano-specific considerations.

View Article and Find Full Text PDF

Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials.

View Article and Find Full Text PDF
Article Synopsis
  • - A study examined the potential genotoxic effects of nano-structured synthetic amorphous silica (SAS), a common food additive, by conducting a 90-day oral toxicity test on adult rats, using doses that simulate potential human exposure.
  • - Various tests, including the comet assay, Pig-a assay, and micronucleus assay, were performed on different organs to evaluate DNA damage and mutations.
  • - Results showed no significant increases in gene mutations or chromosome damage in blood or colon, but there was a weak genotoxic effect observed in the spleen.
View Article and Find Full Text PDF

(Quantitative) structure-activity relationship ([Q]SAR) methodologies are widely applied to predict the (eco)toxicological effects of chemicals, and their use is envisaged in different regulatory frameworks for filling data gaps of untested substances. However, their application to the risk assessment of nanomaterials is still limited, also due to the scarcity of large and curated experimental datasets. Despite a great amount of nanosafety data having been produced over the last decade in international collaborative initiatives, their interpretation, integration and reuse has been hampered by several obstacles, such as poorly described (meta)data, non-standard terminology, lack of harmonized reporting formats and criteria.

View Article and Find Full Text PDF

The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment.

View Article and Find Full Text PDF

The alkaline comet assay, or single cell gel electrophoresis, is one of the most popular methods for assessing DNA damage in human population. One of the open issues concerning this assay is the identification of those factors that can explain the large inter-individual and inter-laboratory variation. International collaborative initiatives such as the hCOMET project - a COST Action launched in 2016 - represent a valuable tool to meet this challenge.

View Article and Find Full Text PDF

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data.

View Article and Find Full Text PDF

Despite the widespread use of silver nanoparticles (AgNPs) in different fields and the amount of investigations available, to date, there are many contradictory results on their potential toxicity. In the present study, extensively characterized 20-nm AgNPs were investigated using optimized protocols and standardized methods to test several toxicological endpoints in different cell lines. The agglomeration/aggregation state of AgNPs in culture media was measured by dynamic light scattering (DLS).

View Article and Find Full Text PDF

Introduction: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies.

Methods: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders.

View Article and Find Full Text PDF

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability.

View Article and Find Full Text PDF

In the last years, a number of in vitro studies have been performed to assess the genotoxic activity of titanium dioxide (TiO ). To resolve the contradictory results, in this study, we investigated the genotoxic activity of commercial TiO nanoparticles (NPs) and microparticles of different forms (anatase, rutile and mix of both). We evaluated micronucleus formation in stimulated lymphocytes, as well as DNA strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine in peripheral blood mononuclear cells (PBMCs), a mixed population of lymphocytes and monocytes.

View Article and Find Full Text PDF

Increased telomerase expression has been implicated in the pathogenesis of lung cancer and, since the primary cause of lung cancer is smoking, an association between telomerase reactivation and tobacco smoke has been proposed. In this work an investigation has been performed to assess the relationship between tobacco smoke exposure and telomerase activity (TA) in peripheral blood mononuclear cells of healthy smokers. The methylation status of the catalytic subunit of telomerase hTERT was concurrently investigated to assess the possible association between epigenetic modifications of hTERT and TA.

View Article and Find Full Text PDF

In this work we investigated the genotoxicity of zinc oxide and titanium dioxide nanoparticles (ZnO NPs; TiO2 NPs) induced by oxidative stress on human colon carcinoma cells (Caco-2 cells). We measured free radical production in acellular conditions by Electron Paramagnetic Resonance technique and genotoxicity by micronucleus and Comet assays. Oxidative DNA damage was assessed by modified Comet assay and by measuring 8-oxodG steady state levels.

View Article and Find Full Text PDF

Background: Despite the well-documented role of cigarette smoke in the development of chronic obstructive pulmonary disease (COPD), lung cancer and cardiovascular disease, biomarkers for screening or monitoring disease progression and outcome remain elusive, particularly for COPD and lung cancer. Inflammatory cells and mediators are likely to be involved in the disease processes, but their importance is still poorly understood. The purpose of this study was to investigate early changes in immunological markers associated with smoking in healthy monozygotic twins without a detectable disease discordant for smoking, thereby minimising data variability due to genetic background.

View Article and Find Full Text PDF

Previous studies in twins indicate that non-shared environment, beyond genetic factors, contributes substantially to individual variation in mutagen sensitivity; however, the role of specific causative factors (e.g. tobacco smoke, diet) was not elucidated.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the possible correlation between smoking status and biomarkers of exposure (BoE) and biological effect (BoBE) in monozygotic twins discordant for smoking status (smoker and non-smoker pairs). By eliminating potential genetic variability in this manner, a clearer pattern of the effects of lifestyle and environmental exposures should become apparent.

Methods: This was a cross-sectional study on monozygotic healthy twins (44 subjects, 26 males and 18 females) with a mean age 31.

View Article and Find Full Text PDF

The use of short term in vitro tests is an important step in the evaluation of the mechanism of action of cigarette smoke condensate (CSC). This study evaluated the effects of both CSC and solvents on Swiss 3T3 murine fibroblast cells. Results show that after 24 hours of treatment, CSC exerts a dose-dependent cytotoxic activity, both in methanol and dimethyl sulfoxide (DMSO), through mechanisms involving cell death and alterations in cell proliferation and metabolism.

View Article and Find Full Text PDF

In the last few years tobacco companies have been developing several research strategies in order to reduce the risks associated with smoking. These strategies include, for example, the refining of alternative cigarette designs that reduce the amount of hazardous chemicals in the mainstream smoke by introducing modified filters, and/or reducing the amount of biologically significant ingredients in tobacco-burning cigarettes. In the last few decades numerous studies have been published to assess the biological activity of tobacco smoke using in vivo and in vitro test systems.

View Article and Find Full Text PDF

Inter-individual variation in response to exposure to carcinogens has been ascribed to differences in carcinogen metabolism as well as to variability in DNA repair capacity (DRC). In order to investigate the role of inherited and acquired factors on individual variation in DNA repair capacity, a mutagen sensitivity assay was carried out on 31 healthy subjects. Fresh blood samples were irradiated with gamma-rays (2Gy) and the kinetics of DNA repair in leukocytes assessed by the comet assay 0, 15, and 30 min after irradiation.

View Article and Find Full Text PDF

The genetic effects of occupational exposure to low polycyclic aromatic hydrocarbon (PAH) concentrations were investigated in primary aluminium industry workers. The study subjects were employed in a plant that uses pre-baked anode cells, and has relatively low PAH contamination. Forty-two male workers belonging to different job categories (anode fabrication, baking, rodding, electrolysis, maintenance), together with 16 male local residents with no occupational exposure to PAHs were selected for the analysis of micronuclei and DNA lesions in peripheral lymphocytes.

View Article and Find Full Text PDF