Poly(l-lactic acid) (PLLA) is a widely used U.S. Food and Drug Administration-approved implantable biomaterial that also possesses strong piezoelectricity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Vascular stenting is a common procedure used to treat diseased blood vessels by opening the narrowed vessel lumen and restoring blood flow to ischemic tissues in the heart and other organs. In this work, we report a novel piezoelectric stent featuring a zigzag shape fabricated by fused deposition modeling three-dimensional (3D) printing with a built-in electric field. The piezoelectric composite was made of potassium sodium niobite microparticles and poly(vinylidene fluoride--hexafluoropropylene), complementing each other with good piezoelectric performance and mechanical resilience.
View Article and Find Full Text PDFAnodic dendrite formation is a critical issue in rechargeable batteries and often leads to poor cycling stability and quick capacity loss. Prevailing strategies for dendrite suppression aim at slowing down the growth rate kinetically but still leaving possibilities for dendrite evolution over time. Herein, we report a complete dendrite elimination strategy using a mesoporous ferroelectric polymer membrane as the battery separator.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2023
Current breast cancer treatments involve aggressive and invasive methods, leaving room for new therapeutic approaches to emerge. In this work, we explore the possibility of using piezoelectric [P(VDF-TrFE)] microparticles (MPs) as a source of inducing irreversible electroporation (IRE) of 4T1 breast cancer cells. We detail the MP formation mechanism and size control and subsequent characterizations of the as-synthesized MPs which confirms the presence of piezoelectric β-phase.
View Article and Find Full Text PDFTwo-dimensional (2D) ferromagnetic (FM) materials with nanoscale thickness and spontaneous net magnetization have emerged as a promising class of functional materials for applications in next-generation spintronics, quantum processing, and data storage devices. However, most 2D materials exhibit weak FM even at low temperatures, limiting their potential applications in many technological fields. The fabrication of strong room-temperature FM 2D materials is highly desirable for the development of practical applications.
View Article and Find Full Text PDFStretchability is an essential property for wearable devices to match varying strains when interfacing with soft tissues or organs. While piezoelectricity has broad application potentials as tactile sensors, artificial skins, or nanogenerators, enabling tissue-comparable stretchability is a main roadblock due to the intrinsic rigidity and hardness of the crystalline phase. Here, an amino acid-based piezoelectric biocrystal thin film that offers tissue-compatible omnidirectional stretchability with unimpaired piezoelectricity is reported.
View Article and Find Full Text PDFThe ethanol oxidation reaction (EOR) is an economical pathway in many electrochemical systems for clean energy, such as ethanol fuel cells and the anodic reaction in hydrogen generation. Noble metals, such as platinum, are benchmark catalysts for EOR owing to their superb electrochemical capability. To improve sustainability and product selectivity, nickel (Ni)-based electrocatalysts are considered promising alternatives to noble-metal EOR.
View Article and Find Full Text PDFTwo-dimensional (2D) piezoelectric materials have recently drawn intense interest in studying the nanoscale electromechanical coupling phenomenon and device development. A critical knowledge gap exists to correlate the nanoscale piezoelectric property with the static strains often found in 2D materials. Here, we present a study of the out-of-plane piezoelectric property of nanometer-thick 2D ZnO-nanosheets (NS) in correlation to in-plane strains, using via strain-correlated piezoresponse force microscopy (PFM).
View Article and Find Full Text PDFAmorphous titanium dioxide (TiO) film coating by atomic layer deposition (ALD) is a promising strategy to extend the photoelectrode lifetime to meet the industrial standard for solar fuel generation. To realize this promise, the essential structure-property relationship that dictates the protection lifetime needs to be uncovered. In this work, we reveal that in addition to the imbedded crystalline phase, the presence of residual chlorine (Cl) ligands is detrimental to the silicon (Si) photoanode lifetime.
View Article and Find Full Text PDFAmorphous titanium dioxide TiO (a-TiO) has been widely studied, particularly as a protective coating layer on semiconductors to prevent corrosion and promote electron-hole conduction in photoelectrochemical reactions. The stability and longevity of a-TiO is strongly affected by the thickness and structural heterogeneity, implying that understanding the structure properties of a-TiO is crucial for improving the performance. This study characterized the structural and electronic properties of a-TiO thin films (∼17 nm) grown on Si by atomic layer deposition (ALD).
View Article and Find Full Text PDFThe design and synthesis of high-quality two-dimensional (2D) materials with desired morphology are essential for property control. One critical challenge that impedes the understanding and control of 2D crystal nucleation and growth is the inability of direct observation of the nanocrystal evolution process with high enough time resolution. Here, we demonstrated an X-ray scattering approach that directly reveals 2D wurtzite ZnO nanosheet growth at the air-water interface.
View Article and Find Full Text PDFResearch (Wash D C)
February 2021
A quantitative understanding of the nanoscale piezoelectric property will unlock many application potentials of the electromechanical coupling phenomenon under quantum confinement. In this work, we present an atomic force microscopy- (AFM-) based approach to the quantification of the nanometer-scale piezoelectric property from single-crystalline zinc oxide nanosheets (NSs) with thicknesses ranging from 1 to 4 nm. By identifying the appropriate driving potential, we minimized the influences from electrostatic interactions and tip-sample coupling, and extrapolated the thickness-dependent piezoelectric coefficient ( ).
View Article and Find Full Text PDFTreating vascular grafts failure requires complex surgery procedures and is associated with high risks. A real-time monitoring vascular system enables quick and reliable identification of complications and initiates safer treatments early. Here, an electric fieldassisted 3D printing technology is developed to fabricate in situ-poled ferroelectric artificial arteries that offer battery-free real-time blood pressure sensing and occlusion monitoring capability.
View Article and Find Full Text PDFFabrication of soft piezoelectric nanomaterials is essential for the development of wearable and implantable biomedical devices. However, a big challenge in this soft functional material development is to achieve a high piezoelectric property with long-term stability in a biological environment. Here, a one-step strategy for fabricating core/shell poly(vinylidene difluoride) (PVDF)/dopamine (DA) nanofibers (NFs) with a very high β-phase content and self-aligned polarization is reported.
View Article and Find Full Text PDFNano Lett
September 2020
Hepatic ischemia-reperfusion injury (IRI), which mainly results from excessive reactive oxygen species (ROS) generated by a reperfusion burst of oxygen, has long been a major cause of liver dysfunction and failure after surgical procedures. Here, a monodispersed hydrophilic carbohydrate-derived nanoparticle (C-NP) was synthesized as a nanoantioxidant that could effectively prevent hepatic IRI. The spherical C-NPs had a size of ∼78 ± 11.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2020
Cellulosic materials are attractive candidates for nature piezoelectrics. Vertically aligned cellulose nanocrystal (CNC) films are expected to show strong piezoelectricity as the largest dipole moment in CNCs exists along the cellulose chain. In this work, we adapted the confinement cell technology that was used to fabricate colloidal opal structures to align CNC rods vertically on a large scale.
View Article and Find Full Text PDFNanomicro Lett
February 2020
Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous LaO nanosheets hybridized with uniform LaO nanoparticles (LaO@NP-NS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Room-temperature ferromagnetism in two-dimensional (2D) oxide materials is an intriguing phenomenon for spintronic applications. Here, we report significantly enhanced room-temperature ferromagnetism observed from ultrathin cerium oxide nanosheets hybridized with organic surfactant molecules. The hybrid nanosheets were synthesized by ionic layer epitaxy over a large area at the water-air interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
In vivo biomechanical energy harvesting by implanted nanogenerators (i-NGs) is promising for self-powered implantable medical devices (IMDs). One critical challenge to reach practical applications is the requirement of continuous direct-current (dc) output, while the low-frequency body activities typically generate discrete electrical pulses. Here, we developed an ultrastretchable micrograting i-NG system that could function as a battery-free dc micro-power supply.
View Article and Find Full Text PDF