Reaction centers from with residue M265 mutated from isoleucine to threonine, serine, and asparagine (M265IT, M265IS, and M265IN, respectively) in the state are studied by high-resolution electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance spectroscopy methods to investigate the structural characteristics of these mutants influencing the redox properties of the site. All three mutants decrease the redox midpoint potential () of by ∼0.1 V, yet the mechanism for this drop in is unclear.
View Article and Find Full Text PDFDetermining the complete electron spin density distribution for protein-bound radicals, even with advanced pulsed electron paramagnetic resonance (EPR) methods, is a formidable task. Here we present a strategy to overcome this problem combining multifrequency HYSCORE and ENDOR measurements on site-specifically C-labeled samples with DFT calculations on model systems. As a demonstration of this approach, pulsed EPR experiments are performed on the primary Q and secondary Q ubisemiquinones of the photosynthetic reaction center from Rhodobacter sphaeroides C-labeled at the ring and tail positions.
View Article and Find Full Text PDFIt has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor.
View Article and Find Full Text PDFUnlike photosystem II (PSII) in higher plants, bacterial photosynthetic reaction centers (bRCs) from Proteobacteria have an additional peripheral membrane subunit "H". The H subunit is necessary for photosynthetic growth, but can be removed chemically in vitro. The remaining LM dimer retains its activity to perform light-induced charge separation.
View Article and Find Full Text PDFBy utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.
View Article and Find Full Text PDFThe second electron transfer from primary ubiquinone Q(A) to secondary ubiquinone Q(B) in the reaction center (RC) from Rhodobacter sphaeroides involves a protonated Q(B)(-) intermediate state whose low pK(a) makes direct observation impossible. Here, we replaced the native ubiquinone with low-potential rhodoquinone at the Q(B) binding site of the M265IT mutant RC. Because the in situ midpoint redox potential of Q(A) of this mutant was lowered approximately the same extent (≈100 mV) as that of Q(B) upon exchange of ubiquinone with low-potential rhodoquinone, the inter-quinone (Q(A) → Q(B)) electron transfer became energetically favorable.
View Article and Find Full Text PDFUbiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined.
View Article and Find Full Text PDFThe electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk.
View Article and Find Full Text PDFThe 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB(-) precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB(-)/QBH: 4.
View Article and Find Full Text PDFRecent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (Q) and secondary (Q) electron acceptors in photosynthetic reaction centers from purple bacteria such as . C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQ and SQ, were compared with DFT calculations of the C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (Δ) between Q and Q of 175-193 mV.
View Article and Find Full Text PDFX- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance (14)N and in (15)N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through simultaneous simulation of the Q-band (15)N Davies ENDOR, X- and Q-band (14,15)N HYSCORE, and X-band (14)N three-pulse ESEEM spectra, with support from DFT calculations. The hyperfine coupling constants were found to be a((14)N) = 2.
View Article and Find Full Text PDFThe secondary quinone anion radical QB(-) (SQB) in reaction centers of Rhodobacter sphaeroides interacts with Nδ of His-L190 and Np (peptide nitrogen) of Gly-L225 involved in hydrogen bonds to the QB carbonyls. In this work, S-band (∼3.6 GHz) ESEEM was used with the aim of obtaining a complete characterization of the nuclear quadrupole interaction (nqi) tensors for both nitrogens by approaching the cancelation condition between the isotropic hyperfine coupling and (14)N Zeeman frequency at lower microwave frequencies than traditional X-band (9.
View Article and Find Full Text PDFThis Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K.
View Article and Find Full Text PDFRoderick K. Clayton passed away on October 23, 2011, at the age of 89, shortly after the plan for this dedicatory issue of Photosynthesis Research had been hatched. I had just written a lengthy letter to him to re-establish contact after a hiatus of 2 or 3 years, and to suggest that I visit him to talk about his life.
View Article and Find Full Text PDFOnly quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV.
View Article and Find Full Text PDFUbiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane.
View Article and Find Full Text PDFIn the Q(B) site of the Rhodobacter sphaeroides photosynthetic reaction center, the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study, we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM, and HYSCORE spectroscopic differences between mutant L223SA and the wild-type sample (WT) are negligible, indicating only minor perturbations in the ubisemiquinone spin density for the mutant sample.
View Article and Find Full Text PDFIn the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (Q(A)) and secondary (Q(B)) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the Q(A) and Q(B) sites, using samples of (15)N-labeled reaction centers, with the native high spin Fe(2+) exchanged for diamagnetic Zn(2+), prepared in (1)H(2)O and (2)H(2)O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the Q(A) SQ by Flores et al.
View Article and Find Full Text PDFNaturally occurring photosynthetic systems use elaborate pathways of self-repair to limit the impact of photo-damage. Here, we demonstrate a complex consisting of two recombinant proteins, phospholipids and a carbon nanotube that mimics this process. The components self-assemble into a configuration in which an array of lipid bilayers aggregate on the surface of the carbon nanotube, creating a platform for the attachment of light-converting proteins.
View Article and Find Full Text PDFThe interaction of cytochrome c with ubiquinol-cytochrome c oxidoreductase (bc₁ complex) has been studied for >30 years, yet many aspects remain unclear or controversial. We report the first molecular dynamic simulations of the cyt c-bc₁ complex interaction. Contrary to the results of crystallographic studies, our results show that there are multiple dynamic hydrogen bonds and salt bridges in the cyt c-c₁ interface.
View Article and Find Full Text PDFPhotosynthetic reaction centers from Rhodobacter sphaeroides have identical ubiquinone-10 molecules functioning as primary (Q(A)) and secondary (Q(B)) electron acceptors. X-band 2D pulsed EPR spectroscopy, called HYSCORE, was applied to study the interaction of the Q(B) site semiquinone with nitrogens from the local protein environment in natural and (15)N uniformly labeled reactions centers. (14)N and (15)N HYSCORE spectra of the Q(B) semiquinone show the interaction with two nitrogens carrying transferred unpaired spin density.
View Article and Find Full Text PDFThe kinetics of imidazole (Im) and N-methylimidazole (MeIm) binding to oxidized cytochrome (cyt) c(1) of detergent-solubilized bc(1) complex from Rhodobacter sphaeroides are described. The rate of formation of the cyt c(1)-Im complex exhibited three separated regions of dependence on the concentration of imidazole: (i) below 8 mM Im, the rate increased with concentration in a parabolic manner; (ii) above 20 mM, the rate leveled off, indicating a rate-limiting conformational step with lifetime approximately 1 s; and (iii) at Im concentrations above 100 mM, the rate substantially increased again, also parabolically. In contrast, binding of MeIm followed a simple hyperbolic concentration dependence.
View Article and Find Full Text PDFWe have used imidazole (Im) and N-methylimidazole (MeIm) as probes of the heme-binding cavity of membrane-bound cytochrome (cyt) c(1) in detergent-solubilized bc(1) complex from Rhodobacter sphaeroides. Imidazole binding to cyt c(1) substantially lowers the midpoint potential of the heme and fully inhibits bc(1) complex activity. Temperature dependences showed that binding of Im (K(d) approximately 330 microM, 25 degrees C, pH 8) is enthalpically driven (DeltaH(0) = -56 kJ/mol, DeltaS(0) = -121 J/mol/K), whereas binding of MeIm is 30 times weaker (K(d) approximately 9.
View Article and Find Full Text PDFThe Q cycle mechanism proposed by Peter Mitchell in the 1970's explicitly considered the modification of ubiquinone two-electron redox properties upon binding to Complex III to match the thermodynamics of the other single-electron redox cofactors in the complex, and guide electron transfer to support the generation of a proton electro-chemical gradient across native membranes. A better understanding of the engineering of Complex III is coming from a now moderately well defined thermodynamic description of the redox components as a function of pH, including the Qi/heme b(H) cluster. The redox properties of the most obscure component, Qo, is finally beginning to be resolved.
View Article and Find Full Text PDFThe orientation of a methoxy substituent is known to substantially influence the electron affinity and vibrational spectroscopy of benzoquinones, and has been suggested to be important in determining the function of ubiquinone as a redox cofactor in bioenergetics. Ubiquinone functions as both the primary (Q(A)) and secondary (Q(B)) quinone in the reaction centers of many purple photosynthetic bacteria, and is almost unique in its ability to establish the necessary redox free energy gap for 1-electron transfer between them. The role of the methoxy substitution in this requirement was examined using monomethoxy analogues of ubiquinone-4 - 2-methoxy-3,5-dimethyl-6-isoprenyl-1,4-benzoquinone (2-MeO-Q) and 3-methoxy-2,5-dimethyl-6-isoprenyl-1,4-benzoquinone (3-MeO-Q).
View Article and Find Full Text PDF