Publications by authors named "Clement Debacker"

Brain age, as distinct from chronological age, may reveal post-stroke recovery mechanisms, but longitudinal studies tracking brain age are lacking. We explored longitudinal change of brain age post-stroke and its relation to upper limb sensorimotor outcome. T-weighted MRI at baseline (∼3 weeks) and follow-up (3-7 months) post-stroke was used to estimate brain age.

View Article and Find Full Text PDF

DICOM is an industry-standard for medical imaging data targeted at interoperability across systems. This enables transfer, storage and processing of imaging data regardless of the manufacturer. Pragmatically, manufacturers often store detailed acquisition parameters in private rather than public DICOM tags.

View Article and Find Full Text PDF

Background: Correlating the human connectome with clinical responses elicited during intraoperative brain mapping helps understanding of the intrinsic organization of the human brain. Methods for locating eloquent sites on neuroimaging are not standardized. In the present study, we standardized a methodology for locating subcortical eloquent sites identified during intraoperative mapping for awake brain tumor resection on a reference brain template.

View Article and Find Full Text PDF

Background: Neuromodulation of deep brain regions has shown promise for treatment-resistant depression (TRD). However, it currently requires neurosurgical electrode implantation, posing significant risks and limiting widespread use while TRD affects around 100 million people worldwide. Low-intensity transcranial ultrasound stimulation (TUS) could allow precise and non-invasive deep neuromodulation, provided that the challenge of the defocusing effects of the skull is tackled.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to validate a deep learning algorithm that generates T2*-weighted images from diffusion-weighted (DW) images and to compare its performance with that of true T2*-weighted images for hemorrhage detection on MRI in patients with acute stroke.

Materials And Methods: This single-center, retrospective study included DW- and T2*-weighted images obtained less than 48 hours after symptom onset in consecutive patients admitted for acute stroke. Datasets were divided into training (60 %), validation (20 %), and test (20 %) sets, with stratification by stroke type (hemorrhagic/ischemic).

View Article and Find Full Text PDF

To assess the efficacy of horticultural therapy (HT) on anterior cingulate cortex (ACC) activity and the changes in rumination and catastrophizing scores in individuals with chronic low back pain (LBP). We conducted a randomized, controlled, cross-over, 3-week pilot study (ClinicalTrials.gov Identifier: NCT04656158).

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how a deep learning reconstruction (DLR) algorithm can improve MRI quality for brain tumor assessment while reducing long scan times.
  • - In a trial with 22 brain tumor patients, the DLR technique maintained important quantitative MRI parameters like Fractional Anisotropy and T1/T2 relaxation times despite faster scans.
  • - The results suggest that using DLR can create better quality imaging maps, potentially enabling more frequent use of these imaging biomarkers in clinical practice.
View Article and Find Full Text PDF

Purpose: To evaluate performance of synthetic and real FLAIR for identifying early stroke in a multicenter cohort.

Methods: This retrospective study was conducted using DWI and FLAIR extracted from the Endovascular Treatment in Ischemic Stroke image registry (2017-2021). The database was partitioned into subsets according to MRI field strength and manufacturer, and randomly divided into training set (70%) used for model fine-tuning, validation set (15%), and test set (15%).

View Article and Find Full Text PDF

Background: Catatonia is a psychomotor syndrome frequently observed in disorders with neurodevelopmental impairments, including psychiatric disorders such as schizophrenia. The orbitofrontal cortex (OFC) has been repeatedly associated with catatonia. It presents with an important interindividual morphological variability, with three distinct H-shaped sulcal patterns, types I, II, and III, based on the continuity of the medial and lateral orbital sulci.

View Article and Find Full Text PDF

Objective: Postoperative intracerebral hemorrhages are significant complications following brain stereotactic biopsy. They can derive from anatomical structure (sulci, vessels) damage that is missed during stereotactic trajectory planning. In this study, the authors investigated the ability to detect contact between structures at risk and stereotactic trajectories using signal analysis from MRI obtained during clinical practice, with the aim to propose a visual tool to highlight areas with anatomical structures at risk of damage along the biopsy trajectory.

View Article and Find Full Text PDF
Article Synopsis
  • Robot-assisted stereotactic biopsy is improving with the use of advanced imaging and registration systems, like the Neurolocate and O-Arm.
  • A study analyzed data from 100 patients over two years (2019-2021), showing that the new procedure maintains a high histomolecular diagnosis rate while being quicker than older methods.
  • The research found that this procedure is safe, with a low rate of complications, and is effective enough to be recommended for routine use in neurosurgery.
View Article and Find Full Text PDF

Background In acute ischemic stroke (AIS), fluid-attenuated inversion recovery (FLAIR) is used for treatment decisions when onset time is unknown. Synthetic FLAIR could be generated with deep learning from information embedded in diffusion-weighted imaging (DWI) and could replace acquired FLAIR sequence (real FLAIR) and shorten MRI duration. Purpose To compare performance of synthetic and real FLAIR for DWI-FLAIR mismatch estimation and identification of patients presenting within 4.

View Article and Find Full Text PDF

Dynamic susceptibility contrast (DSC) MRI is clinically used to measure brain perfusion by monitoring the dynamic passage of a bolus of contrast agent through the brain. For quantitative analysis of the DSC images, the arterial input function is required. It is known that the original assumption of a linear relation between the R relaxation and the arterial contrast agent concentration is invalid, although the exact relation is as of yet unknown.

View Article and Find Full Text PDF

MRI is a promising tool for translational research to link brain function and structure in animal models of disease to patients with neuropsychiatric disorders. However, given that mouse functional MRI (fMRI) typically relies on anesthetics to suppress head motion and physiological noise, it has been difficult to directly compare brain fMRI in anesthetized mice with that in conscious patients. Here, we developed a new system to acquire fMRI in awake mice, which includes a head positioner and dedicated radio frequency coil.

View Article and Find Full Text PDF

Background: Postoperative intracerebral haematomas represent a serious complication following stereotactic biopsy. We investigated the possible underlying causes - poor planning or poor execution - of postoperative intracerebral haematomas following stereotactic biopsies.

Methods: We performed a technical investigation using a retrospective single-centre consecutive series of robot-assisted stereotactic biopsies for a supratentorial diffuse glioma in adults.

View Article and Find Full Text PDF

Abnormal structural and functional connectivity in the striatum during neurological disorders has been reported using functional magnetic resonance imaging (fMRI), although the effects of cell-type specific neuronal stimulation on fMRI and related behavioral alterations are not well understood. In this study, we combined DREADD technology with fMRI ("chemo-fMRI") to investigate alterations of spontaneous neuronal activity. These were induced by the unilateral activation of dopamine D1 receptor-expressing neurons (D1-neurons) in the mouse dorsal striatum (DS).

View Article and Find Full Text PDF

The contribution of astrocytes to the BOLD fMRI and DfMRI responses in visual cortex of mice following visual stimulation was investigated using TGN-020, an aquaporin 4 (AQP4) channel blocker, acting as an astrocyte function perturbator. Under TGN-020 injection the amplitude of the BOLD fMRI response became significantly higher. In contrast no significant changes in the DfMRI responses and the electrophysiological responses were observed.

View Article and Find Full Text PDF

The Glymphatic System (GS) has been proposed as a mechanism to clear brain tissue from waste. Its dysfunction might lead to several brain pathologies, including the Alzheimer's disease. A key component of the GS and brain tissue water circulation is the astrocyte which is regulated by acquaporin-4 (AQP4), a membrane-bound water channel on the astrocytic end-feet.

View Article and Find Full Text PDF

MRI has potential as a translational approach from rodents to humans. However, given that mouse functional MRI (fMRI) uses anesthetics for suppression of motion, it has been difficult to directly compare the result of fMRI in "unconsciousness" disease model mice with that in "consciousness" patients. We develop awake fMRI to investigate brain function in mice, a copy number variation model of autism.

View Article and Find Full Text PDF

Purpose: To evaluate a prescan-based radiofrequency phase-correction strategy for unbalanced pseudo-continuous arterial spin labeling (pCASL) at 9.4 T in vivo and to test its robustness toward suboptimal shim conditions.

Methods: Label and control interpulse phases were optimized separately by means of two prescans in rats.

View Article and Find Full Text PDF

Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction fraction (OEF), and resting oxidative metabolism (CMRO). Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD), thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2) in a cohort of probable AD dementia and age-matched control participants.

View Article and Find Full Text PDF

Purpose: Arterial spin labeling (ASL) may provide quantitative maps of cerebral blood flow (CBF). Because labeled water exchanges with tissue water, this study evaluates the influence of tissue T on CBF quantification using ASL.

Methods: To locally modify T , a low dose of manganese (Mn) was intracerebrally injected in one hemisphere of 19 rats (cortex or striatum).

View Article and Find Full Text PDF

Imaging heterogeneous cancer lesions is a real challenge. For diagnosis, histology often remains the reference, but it is widely acknowledged that biopsies are not reliable. There is thus a strong interest in establishing a link between clinical in vivo imaging and the biologic properties of tissues.

View Article and Find Full Text PDF

The MAP6 (microtubule-associated protein 6) KO mouse is a microtubule-deficient model of schizophrenia that exhibits severe behavioral disorders that are associated with synaptic plasticity anomalies. These defects are alleviated not only by neuroleptics, which are the gold standard molecules for the treatment of schizophrenia, but also by Epothilone D (Epo D), which is a microtubule-stabilizing molecule. To compare the neuronal transport between MAP6 KO and wild-type mice and to measure the effect of Epo D treatment on neuronal transport in KO mice, MnCl2 was injected in the primary somatosensory cortex.

View Article and Find Full Text PDF

The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment.

View Article and Find Full Text PDF