Publications by authors named "Christopher D Town"

Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.).

View Article and Find Full Text PDF

The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacterial populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here, we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes.

View Article and Find Full Text PDF

Human Parainfluenza viruses (HPIV) type 1 and 3 are important causes of respiratory tract infections in young children globally. HPIV infections do not confer complete protective immunity so reinfections occur throughout life. Since no effective vaccine is available for the two virus subtypes, comprehensive understanding of HPIV-1 and HPIV-3 genetic and epidemic features is important for diagnosis, prevention, and treatment of HPIV-1 and HPIV-3 infections.

View Article and Find Full Text PDF

The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F1 and F2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode.

View Article and Find Full Text PDF

ThaleMine (https://apps.araport.org/thalemine/) is a comprehensive data warehouse that integrates a wide array of genomic information of the model plant Arabidopsis thaliana.

View Article and Find Full Text PDF

The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago.

View Article and Find Full Text PDF

There is an increasing awareness that as a result of structural variation, a reference sequence representing a genome of a single individual is unable to capture all of the gene repertoire found in the species. A large number of genes affected by presence/absence and copy number variation suggest that it may contribute to phenotypic and agronomic trait diversity. Here we show by analysis of the Brassica oleracea pangenome that nearly 20% of genes are affected by presence/absence variation.

View Article and Find Full Text PDF

Background: Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level.

View Article and Find Full Text PDF

Recent RNA-seq studies reveal that the transcriptomes in animals and plants are more complex than previously thought, leading to the inclusion of many more splice isoforms in annotated genomes. However, it is possible that a significant proportion of the transcripts are spurious isoforms that do not contribute to functional proteins. One of the current hypotheses is that commonly used mRNA extraction methods isolate both pre-mature (nuclear) mRNA and mature (cytoplasmic) mRNA, and these incompletely spliced pre-mature mRNAs may contribute to a large proportion of these spurious transcripts.

View Article and Find Full Text PDF

Optical mapping has been widely used to improve de novo plant genome assemblies, including rice, maize, Medicago, Amborella, tomato and wheat, with more genomes in the pipeline. Optical mapping provides long-range information of the genome and can more easily identify large structural variations. The ability of optical mapping to assay long single DNA molecules nicely complements short-read sequencing which is more suitable for the identification of small and short-range variants.

View Article and Find Full Text PDF

Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. J. Craig Venter Institute (JCVI; formerly TIGR) has been involved in M.

View Article and Find Full Text PDF

The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research.

View Article and Find Full Text PDF
Article Synopsis
  • Oilseed rape (Brassica napus L.) originated ~7500 years ago from the hybridization of two species, B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy.
  • The genome study revealed complex interactions between the newly formed An and Cn subgenomes, showing structural and functional exchanges alongside the beginnings of gene loss and expression changes.
  • Natural selection in B. napus has notably promoted the reduction of glucosinolate genes while enhancing oil biosynthesis genes, shedding light on how allopolyploidy affects crop evolution and improvement.
View Article and Find Full Text PDF

Polyploidization events are frequent among flowering plants, and the duplicate genes produced via such events contribute significantly to plant evolution. We sequenced the genome of wild radish (Raphanus raphanistrum), a Brassicaceae species that experienced a whole-genome triplication event prior to diverging from Brassica rapa. Despite substantial gene gains in these two species compared with Arabidopsis thaliana and Arabidopsis lyrata, ∼70% of the orthologous groups experienced gene losses in R.

View Article and Find Full Text PDF

Background: Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.

View Article and Find Full Text PDF

The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified.

View Article and Find Full Text PDF

From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Children's Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4-15.

View Article and Find Full Text PDF

Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions.

View Article and Find Full Text PDF

This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence.

View Article and Find Full Text PDF

Canine alphacoronaviruses (CCoV) exist in two serotypes, type I and II, both of which can cause severe gastroenteritis. Here, we characterize a canine alphacoronavirus, designated CCoV-A76, first isolated in 1976. Serological studies show that CCoV-A76 is distinct from other CCoVs, such as the prototype CCoV-1-71.

View Article and Find Full Text PDF

Defensins are a class of small and diverse cysteine-rich proteins found in plants, insects, and vertebrates, which share a common tertiary structure and usually exert broad-spectrum antimicrobial activities. We used a bioinformatic approach to scan the Vitis vinifera genome and identified 79 defensin-like sequences (DEFL) corresponding to 46 genes and allelic variants, plus 33 pseudogenes and gene fragments. Expansion and diversification of grapevine DEFL has occurred after the split from the last common ancestor with the genera Medicago and Arabidopsis.

View Article and Find Full Text PDF

Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C.

View Article and Find Full Text PDF
Article Synopsis
  • Legumes have a unique ability to fix nitrogen through symbiosis with rhizobial bacteria in structures called nodules, which is crucial for their growth.
  • They belong to the Fabaceae family and evolved from a common ancestor around 60 million years ago, with the papilionoids being the largest group containing most cultivated species.
  • The draft genome sequence of Medicago truncatula, a model organism for legume research, reveals important evolutionary insights and offers valuable genomic resources for improving alfalfa, a related crop with complex genetics.
View Article and Find Full Text PDF

The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties.

View Article and Find Full Text PDF