Burmese pythons (Python bivittatus) eat large meals infrequently and experience a transient but robust increase in cardiac mass and metabolic rate during digestion. Accompanying these changes is a surge in circulating triglycerides. In mammals, overconsumption of food is associated with obesity and lipotoxicity, which increase the risk of heart disease and metabolic syndrome.
View Article and Find Full Text PDFCardiomyocytes hyperplasia is the primary form of fetal heart growth, whereas this proliferative capacity is largely lost in adults across most species. The limited ability of adult cardiomyocytes to re-enter the cell cycle is a major cause of cardiac injury-induced morbidity and mortality. Here, we report that post-prandial Burmese python cardiomyocytes activate cell cycle re-entry to promote persistent cardiac growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Constricting pythons, known for their ability to consume infrequent, massive meals, exhibit rapid and reversible cardiac hypertrophy following feeding. Our primary goal was to investigate how python hearts achieve this adaptive response after feeding. Isolated myofibrils increased force after feeding without changes in sarcomere ultrastructure and without increasing energy cost.
View Article and Find Full Text PDFBackground: RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2022
Pathological cardiac hypertrophy is associated with increased morbidity and mortality. Understanding the mechanisms whereby pathological cardiac growth can be reversed could be of therapeutic value. Here, we show that pathways leading to regression of pathological cardiac hypertrophy are strongly dependent on the hypertrophic trigger and are significantly modified by sex.
View Article and Find Full Text PDFBackground: The coronavirus disease 2019 pandemic spread to >200 countries in <6 months. To understand coronavirus spread, determining transmission rate and defining factors that increase transmission risk are essential. Most cases are asymptomatic, but people with asymptomatic infection have viral loads indistinguishable from those in symptomatic people, and they do transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
View Article and Find Full Text PDFBackground Biological sex is an important modifier of cardiovascular disease and women generally have better outcomes compared with men. However, the contribution of cardiac fibroblasts (CFs) to this sexual dimorphism is relatively unexplored. Methods and Results Isoproterenol (ISO) was administered to rats as a model for chronic β-adrenergic receptor (β-AR)-mediated cardiovascular disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2021
We analyze data from the fall 2020 pandemic response efforts at the University of Colorado Boulder, where more than 72,500 saliva samples were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using qRT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified.
View Article and Find Full Text PDFHere, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification. The test has two steps: (1) heat saliva with a stabilization solution and (2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow.
View Article and Find Full Text PDFWe analyze data from the Fall 2020 pandemic response efforts at the University of Colorado Boulder (USA), where more than 72,500 saliva samples were tested for SARS-CoV-2 using quantitative RT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified.
View Article and Find Full Text PDFHere, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The test has two steps: 1) heat saliva with a stabilization solution, and 2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow.
View Article and Find Full Text PDFBackground In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles.
View Article and Find Full Text PDF