Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance and carbon dioxide ( ). Amphistomatous leaves have stomata on both abaxial and adaxial leaf surfaces.
View Article and Find Full Text PDFBackground And Aims: The benefits and costs of amphistomy (AS) vs. hypostomy (HS) are not fully understood. Here, we quantify benefits of access of CO2 through stomata on the upper (adaxial) leaf surface, using 13C abundance in the adaxial and abaxial epicuticular wax.
View Article and Find Full Text PDFPremise: The adaptive significance of amphistomy (stomata on both upper and lower leaf surfaces) is unresolved. A widespread association between amphistomy and open, sunny habitats suggests the adaptive benefit of amphistomy may be greatest in these contexts, but this hypothesis has not been tested experimentally. Understanding amphistomy informs its potential as a target for crop improvement and paleoenvironment reconstruction.
View Article and Find Full Text PDFHedrick et al. (2016) (Negative-assortative mating for color in wolves. Evolution, 70, 757-766) reported on "negative-assortative mating for color in wolves" from Yellowstone National Park, the "first documented case of significant negative-assortative mating in mammals.
View Article and Find Full Text PDFPremise: Many traits covary with environmental gradients to form phenotypic clines. While local adaptation to the environment can generate phenotypic clines, other nonadaptive processes may also. If local adaptation causes phenotypic clines, then the direction of genotypic selection on traits should shift from one end of the cline to the other.
View Article and Find Full Text PDFAoB Plants
October 2021
Plant ecophysiology is founded on a rich body of physical and chemical theory, but it is challenging to connect theory with data in unambiguous, analytically rigorous and reproducible ways. Custom scripts written in computer programming languages (coding) enable plant ecophysiologists to model plant processes and fit models to data reproducibly using advanced statistical techniques. Since many ecophysiologists lack formal programming education, we have yet to adopt a unified set of coding principles and standards that could make coding easier to learn, use and modify.
View Article and Find Full Text PDFWhile the fundamental biophysics of C photosynthesis is highly conserved across plants, substantial leaf structural and enzymatic variation translates into variability in rates of carbon assimilation. Although this variation is well documented, it remains poorly understood how photosynthetic rates evolve, and whether macroevolutionary changes are related to the evolution of leaf morphology and biochemistry. A substantial challenge in large-scale comparative studies is disentangling evolutionary adaptation from environmental acclimation.
View Article and Find Full Text PDFPremise: Across taxa, vegetative and floral traits that vary along a fast-slow life-history axis are often correlated with leaf functional traits arrayed along the leaf economics spectrum, suggesting a constrained set of adaptive trait combinations. Such broad-scale convergence may arise from genetic constraints imposed by pleiotropy (or tight linkage) within species, or from natural selection alone. Understanding the genetic basis of trait syndromes and their components is key to distinguishing these alternatives and predicting evolution in novel environments.
View Article and Find Full Text PDFEvery species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges might be uniquely adapted to marginal environments.
View Article and Find Full Text PDFFront Plant Sci
October 2020
Stomatal pores control leaf gas exchange and are one route for infection of internal plant tissues by many foliar pathogens, setting up the potential for tradeoffs between photosynthesis and pathogen colonization. Anatomical shifts to lower stomatal density and/or size may also limit pathogen colonization, but such developmental changes could permanently reduce the gas exchange capacity for the life of the leaf. I developed and analyzed a spatially explicit model of pathogen colonization on the leaf as a function of stomatal size and density, anatomical traits which partially determine maximum rates of gas exchange.
View Article and Find Full Text PDFLeaf optical properties impact leaf energy balance and thus leaf temperature. The effect of leaf development on mid-infrared (MIR) reflectance, and hence thermal emissivity, has not been investigated in detail. We measured a suite of morphological characteristics, as well as directional-hemispherical reflectance from ultraviolet to thermal infrared wavelengths (250 nm to 20 µm) of leaves from five temperate deciduous tree species over the 8 wk following spring leaf emergence.
View Article and Find Full Text PDFGlob Chang Biol
January 2020
AoB Plants
December 2019
Plants must regulate leaf temperature to optimize photosynthesis, control water loss and prevent damage caused by overheating or freezing. Physical models of leaf energy budgets calculate the energy fluxes and leaf temperatures for a given set leaf and environmental parameters. These models can provide deep insight into the variation in leaf form and function, but there are few computational tools available to use these models.
View Article and Find Full Text PDFIntegr Comp Biol
September 2019
Stomata regulate the supply of CO2 for photosynthesis and the rate of water loss out of the leaf. The presence of stomata on both leaf surfaces, termed amphistomy, increases photosynthetic rate, is common in plants from high light habitats, and rare otherwise. In this study I use optimality models based on leaf energy budget and photosynthetic models to ask why amphistomy is common in high light habitats.
View Article and Find Full Text PDFClimate can affect plant populations through direct effects on physiology and fitness, and through indirect effects on their relationships with pollinating mutualists. We therefore expect that geographic variation in climate might lead to variation in plant mating systems. Biogeographic processes, such as range expansion, can also contribute to geographic patterns in mating system traits.
View Article and Find Full Text PDFIn most plants, stomata are located only on the abaxial leaf surface (hypostomy), but many plants have stomata on both surfaces (amphistomy). High light and herbaceous growth form have been hypothesized to favor amphistomy, but these hypotheses have not been rigorously tested together using phylogenetic comparative methods. I leveraged a large dataset including stomatal ratio, Ellenberg light indicator value, growth form and phylogenetic relationships for 372 species of British angiosperms.
View Article and Find Full Text PDFSpecies barriers, expressed as hybrid inviability and sterility, are often due to epistatic interactions between divergent loci from two lineages. Theoretical models indicate that the strength, direction, and complexity of these genetic interactions can strongly affect the expression of interspecific reproductive isolation and the rates at which new species evolve. Nonetheless, empirical analyses have not quantified the frequency with which loci are involved in interactions affecting hybrid fitness, and whether these loci predominantly interact synergistically or antagonistically, or preferentially involve loci that have strong individual effects on hybrid fitness.
View Article and Find Full Text PDFTheory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa.
View Article and Find Full Text PDFThe West-Brown-Enquist (WBE) metabolic scaling theory posits that many organismal features scale predictably with body size because of selection to minimize transport costs in resource distribution networks. Many scaling exponents are quarter-powers, as predicted by WBE, but there are also biologically significant deviations that could reflect adaptation to different environments. A central but untested prediction of the WBE model is that wide deviation from optimal scaling is penalized, leading to a pattern of constraint on scaling exponents.
View Article and Find Full Text PDFEcologically important traits do not evolve without limits. Instead, evolution is constrained by the set of available and viable phenotypes. In particular, natural selection may only favour a narrow range of adaptive optima constrained within selective regimes.
View Article and Find Full Text PDFHybrid incompatibilities contribute to reproductive isolation between species, allowing them to follow independent evolutionary trajectories. Since hybrid incompatibilities are by definition deleterious, they cannot be selected for directly and must arise as a by-product of evolutionary divergence. Divergent resolution of duplicate genes, a special case of Dobzhansky-Muller incompatibilities, is one mechanism by which hybrid incompatibility can evolve.
View Article and Find Full Text PDFAdaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae).
View Article and Find Full Text PDFNatural selection on photosynthetic performance is a primary factor determining leaf phenotypes. The complex CO2 diffusion path from substomatal cavities to the chloroplasts - the mesophyll conductance (g(m)) - limits photosynthetic rate in many species and hence shapes variation in leaf morphology and anatomy. Among sclerophyllous and succulent taxa, structural investment in leaves, measured as the leaf dry mass per area (LMA), has been implicated in decreased gm .
View Article and Find Full Text PDF