Organisms invariably experience trade-offs in their capacities for interacting with their environments. In resource competition, this often means that an organism's ability to acquire one resource can only come at the cost of less ability with others. If the traits governing resource acquisition are under selection and heritable, this will induce eco-evolutionary dynamics along the trade-off.
View Article and Find Full Text PDFPopulation cycles are prevalent in ecosystems and play key roles in determining their functions. While multiple mechanisms have been theoretically shown to generate population cycles, there are limited examples of mutualisms driving self-sustained oscillations. Using an engineered microbial community that cross-feeds essential amino acids, we experimentally demonstrate cycles in strain abundance that are robust across environmental conditions.
View Article and Find Full Text PDFSimple models have been used to describe ecological processes for over a century. However, the complexity of ecological systems makes simple models subject to modelling bias due to simplifying assumptions or unaccounted factors, limiting their predictive power. Neural ordinary differential equations (NODEs) have surged as a machine-learning algorithm that preserves the dynamic nature of the data (Chen 2018 ).
View Article and Find Full Text PDFWhile natural communities can contain hundreds of species, modern coexistence theory focuses primarily on species pairs. Alternatively, the structural stability approach considers the feasibility of equilibria, gaining scalability to larger communities but sacrificing information about dynamic stability. Three-species competitive communities are a bridge to more-diverse communities.
View Article and Find Full Text PDFMacroecological scaling patterns, such as between prey and predator biomass, are fundamental to our understanding of the rules of biological organization and ecosystem functioning. Although these scaling patterns are ubiquitous, how they arise is poorly understood. To explain these patterns, we used an eco-evolutionary predator-prey model parameterized using data for phytoplankton and zooplankton.
View Article and Find Full Text PDFRecent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community.
View Article and Find Full Text PDFClimate warming is altering life cycles of ectotherms by advancing phenology and decreasing generation times. Theoretical models provide powerful tools to investigate these effects of climate warming on consumer-resource population dynamics. Yet, existing theory primarily considers organisms with simplified life histories in constant temperature environments, making it difficult to predict how warming will affect organisms with complex life cycles in seasonal environments.
View Article and Find Full Text PDFAbstractHow is trait diversity in a community apportioned between and within coevolving species? Disruptive selection may result in either a few species with large intraspecific trait variation (ITV) or many species with different mean traits but little ITV. Similar questions arise in spatially structured communities: heterogeneous environments could result in either a few species that exhibit local adaptation or many species with different mean traits but little local adaptation. To date, theory has been well-equipped to either include ITV or to dynamically determine the number of coexisting species, but not both.
View Article and Find Full Text PDFSpecies-abundance distributions (SADs) describe the spectrum of commonness and rarity in a community. Beyond the universal observation that most species are rare and only a few common, more-precise description of SAD shape is controversial. Furthermore, the mechanisms behind SADs and how they vary along environmental gradients remain unresolved.
View Article and Find Full Text PDFAbstractThe spread of an enteric pathogen in the human gut depends on many interacting factors, including pathogen exposure, diet, host gut environment, and host microbiota, but how these factors jointly influence infection outcomes remains poorly characterized. Here we develop a model of host-mediated resource competition between mutualistic and pathogenic taxa in the gut that aims to explain why similar hosts, exposed to the same pathogen, can have such different infection outcomes. Our model successfully reproduces several empirically observed phenomena related to transitions between healthy and infected states, including (1) the nonlinear relationship between pathogen inoculum size and infection persistence, (2) the elevated risk of chronic infection during or after treatment with broad-spectrum antibiotics, (3) the resolution of gut dysbiosis with fecal microbiota transplants, and (4) the potential protection from infection conferred by probiotics.
View Article and Find Full Text PDFAbstractPredicting how food webs will respond to global environmental change is difficult because of the complex interplay between the abiotic forcing and biotic interactions. Mechanistic models of species interactions in seasonal environments can help understand the effects of global change in different ecosystems. Seasonally ice-covered lakes are warming faster than many other ecosystems and undergoing pronounced food web changes, making the need to forecast those changes especially urgent.
View Article and Find Full Text PDFEnvironments change, for both natural and anthropogenic reasons, which can threaten species persistence. Evolutionary adaptation is a potentially powerful mechanism to allow species to persist in these changing environments. To determine the conditions under which adaptation will prevent extinction (evolutionary rescue), classic quantitative genetics models have assumed a constantly changing environment.
View Article and Find Full Text PDFOngoing climate change is shifting species distributions and increasing extinction risks globally. It is generally thought that large population sizes and short generation times of marine phytoplankton may allow them to adapt rapidly to global change, including warming, thus limiting losses of biodiversity and ecosystem function. Here, we show that a marine diatom survives high, previously lethal, temperatures after adapting to above-optimal temperatures under nitrogen (N)-replete conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
Mutualism, interspecific cooperation that yields reciprocal benefits, can promote species coexistence, enhancing biodiversity. As a specific form of mutualism, cross-feeding, where each of two mutualists produces a resource the other one needs, has been broadly studied. However, few theoretical studies have examined competition between cross-feeding mutualists and cheaters, who do not synthesize resources themselves.
View Article and Find Full Text PDFBiological diversity depends on the interplay between evolutionary diversification and ecological mechanisms allowing species to coexist. Current research increasingly integrates ecology and evolution over a range of timescales, but our common conceptual framework for understanding species coexistence requires better incorporation of evolutionary processes. Here, we focus on the idea of evolutionarily stable communities (ESCs), which are theoretical endpoints of evolution in a community context.
View Article and Find Full Text PDFPlants present a variety of defensive strategies against herbivores, broadly classified into tolerance and resistance. Since resource availability can also limit plant growth, we expect plant allocation to resource acquisition and defense to vary along resource gradients. Yet, the conditions under which one defensive strategy is favored over the other are unclear.
View Article and Find Full Text PDFGlob Chang Biol
October 2018
Cooperative cross-feeding, a resource-exchange mutualism between microbes, is ubiquitous; however, models suggest it should be susceptible to cheating. Recent work suggested two novel mechanisms that could allow cross-feeders to exclude cheaters, even in the absence of tight coupling between cooperative organisms. The first is pattern formation, where cross-feeders form regular patterns so that their resources are separated and cheaters cannot obtain both.
View Article and Find Full Text PDFMutualisms are ubiquitous, but models predict they should be susceptible to cheating. Resolving this paradox has become relevant to synthetic ecology: cooperative cross-feeding, a nutrient-exchange mutualism, has been proposed to stabilize microbial consortia. Previous attempts to understand how cross-feeders remain robust to non-producing cheaters have relied on complex behaviour (e.
View Article and Find Full Text PDFThe ubiquity of cooperative cross-feeding (a resource-exchange mutualism) raises two related questions: Why is cross-feeding favored over self-sufficiency, and how are cross-feeders protected from non-producing cheaters? The Black Queen Hypothesis suggests that if leaky resources are costly, then there should be selection for either gene loss or self-sufficiency, but selection against mutualistic inter-dependency. Localized interactions have been shown to protect mutualists against cheaters, though their effects in the presence of self-sufficient organisms are not well understood. Here we develop a stochastic spatial model to examine how spatial effects alter the predictions of the Black Queen Hypothesis.
View Article and Find Full Text PDFPopulations can persist in directionally changing environments by evolving. Quantitative genetic theory aims to predict critical rates of environmental change beyond which populations go extinct. Here, we point out that all current predictions effectively assume the same specific fitness function.
View Article and Find Full Text PDFAs ecology and evolution become ever more entwined, many areas of ecological theory are being re-examined. Eco-evolutionary analyses of classic coexistence mechanisms are yielding new insights into the structure and stability of communities. We examine fluctuation-dependent coexistence models, identifying communities that are both ecologically and evolutionarily stable.
View Article and Find Full Text PDFTo persist in a changing world, populations must adapt. The ability to adapt is influenced by interactions with other species, such as predators. Recent experiments and theory suggest that selective pressures arising from predation may help prey adapt phenotypically to changing environments, but how this influences persistence remains unclear.
View Article and Find Full Text PDF