Rapid and resource-efficient sample processing, high throughput, and high robustness are critical for effective scientific and clinical application of advanced antigen-specific immunoassays. Traditionally, such immunoassays, especially antigen-specific T-cell analysis by flow cytometry or enzyme-linked immunosorbent spot assays, often rely on the isolation of peripheral blood mononuclear cells. This process is time-consuming, subject to many pre-analytic confounders, and requires large blood volumes.
View Article and Find Full Text PDFComplications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11).
View Article and Find Full Text PDFAllogeneic hematopoietic stem cell transplantation (alloSCT) is the only cure for many hematologic malignancies. However, alloSCT recipients are susceptible to opportunistic pathogens, such as human cytomegalovirus (HCMV). Letermovir prophylaxis has revolutionized HCMV management, but the challenge of late HCMV reactivations has emerged.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm.
View Article and Find Full Text PDFIntroduction: Human cytomegalovirus (HCMV) causes significant morbidity and mortality in allogeneic stem cell transplant (alloSCT) recipients. Recently, antiviral letermovir prophylaxis during the first 100 days after alloSCT replaced PCR-guided preemptive therapy as the primary standard of care for HCMV reactivations. Here, we compared NK-cell and T-cell reconstitution in alloSCT recipients receiving preemptive therapy or letermovir prophylaxis in order to identify potential biomarkers predicting prolonged and symptomatic HCMV reactivation.
View Article and Find Full Text PDFPatients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with and antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion.
View Article and Find Full Text PDFOccupational mold exposure can lead to -associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to -associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls.
View Article and Find Full Text PDFDeeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to antigens.
View Article and Find Full Text PDFWe compared the feasibility of 4 cytomegalovirus (CMV)- and -reactive T-cell immunoassay protocols in allogenic stem cell transplant recipients. While enzyme-linked immunospot performed best overall, logistically advantageous whole blood-based assays performed comparably in patients with less severe lymphocytopenia. CMV-induced interferon-gamma responses correlated strongly across all protocols and showed high concordance with serology.
View Article and Find Full Text PDFFlow cytometric quantification of CD154 mould specific T-cells in antigen-stimulated peripheral blood mononuclear cells (PBMCs) or whole blood has been described as a supportive biomarker to diagnose invasive mould infections and to monitor therapeutic outcomes. As patients at risk frequently receive immunosuppressive and antifungal medication, this study compared the matrix-dependent impact of representative drugs on CD154 T-cell detection rates. PBMCs and whole blood samples from healthy adults were pre-treated with therapeutic concentrations of liposomal amphotericin B, voriconazole, posaconazole, cyclosporine A (CsA) or prednisolone.
View Article and Find Full Text PDFInducible nitric oxide synthase (iNOS) and arginase-2 (ARG2) share a common substrate, arginine. Higher expression of iNOS and exhaled NO are linked to airway inflammation in patients. iNOS deletion in animal models suggests that eosinophilic inflammation is regulated by arginine metabolism.
View Article and Find Full Text PDFCD154+ mould-reactive T cells were proposed as a novel biomarker in the diagnosis of invasive mycoses. As PBMC-based protocols for flow cytometric quantification of these cells are logistically challenging and susceptible to preanalytic delays, this study evaluated and optimized a whole blood-based method for the detection of mould-reactive T cells. Blood collection tubes containing costimulatory antibodies and Aspergillus fumigatus mycelial lysates were inoculated with heparinized whole blood from healthy adults, and detection rates of CD154+/CD4+A.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2018
Invasive aspergillosis (IA) is the most serious life-threatening infectious complication of intensive remission induction chemotherapy and allogeneic stem cell transplantation in patients with a variety of hematological malignancies. is the most commonly isolated species from cases of IA. Despite the various improvements that have been made with preventative strategies and the development of antifungal drugs, there is an urgent need for new therapeutic approaches that focus on strategies to boost the host's immune response, since immunological recovery is recognized as being the major determinant of the outcome of IA.
View Article and Find Full Text PDFMould-specific T cells detectable by flow cytometry or ELISPOT were proposed as a novel biomarker in invasive aspergillosis. To define protocols facilitating sample shipment and longitudinal analysis, this study evaluated the susceptibility of different functional assays for A. fumigatus-specific T-cell quantification and characterisation to pre-analytic delays.
View Article and Find Full Text PDF