CO-based aliphatic polycarbonates (aPCs), produced through the alternating copolymerization of epoxides with CO, present an appealing option for sustainable polymeric materials owing to their renewable feedstock and degradable characteristics. An ongoing challenge in working with aPCs is modifying their mechanical properties to meet specific demands. Herein, we report that monomer ratio and polymer architecture of aPCs impact not only printability by digital light processing (DLP) additive manufacturing, but also dictate the thermomechanical and degradation properties of the printed objects.
View Article and Find Full Text PDFACS Appl Eng Mater
August 2023
Salt hydrate phase change materials are important in advancing thermal energy storage technologies for the development of renewable energies. At present, their widespread use is limited by undesired undercooling and phase separation, as well as their tendency to corrode container materials. Herein, we report a direct ink writing (DIW) additive manufacturing technique to print noncorrosive salt hydrate composites with thoroughly integrated nucleating agents and thermally conductive additives.
View Article and Find Full Text PDFOwing to the high technology maturity of thermally activated delayed fluorescence (TADF) emitter design with a specific molecular shape, extremely high-performance organic light-emitting diodes (OLEDs) have recently been achieved various doping techniques. Recently, undoped OLEDs have drawn immense attention because of their manufacturing cost reduction and procedure simplification. However, capable materials as host emitters are rare and precious because general fluorophores in high-concentration states suffer from serious aggregation-caused quenching (ACQ) and undergo exciton quenching.
View Article and Find Full Text PDFHighly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔE values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ = 86-88%) in the thin films leading to the enhancement of device light outcoupling.
View Article and Find Full Text PDFFor the application of organic light-emitting diodes (OLEDs) in lighting and panels, the basic requirement is to include a full spectrum color range. Compared with the development of blue and green luminophores in thermally activated delayed fluorescence (TADF) technology, the progress of orange-to-red materials is slow and needs further investigation. In this study, three diboron compound-based materials, dPhADBA, dmAcDBA, and SpAcDBA, were designed and synthesized by nucleophilic arylation of three amine donors on 9,10-diboraanthracene (DBA) in a two-step reaction.
View Article and Find Full Text PDF