Publications by authors named "Chenxin Xiao"

Ischemic stroke, a neurological impairment caused by cerebral vascular occlusion, accounts for 87% of the cases of stroke. Recent studies have shown that changes in the abundance of metabolites can directly reveal the cellular phenotypes and identify the clinical implications of stroke diagnosis and therapy. However, systematic research to clarify the relationship between biomarkers and the mechanisms of ischemic stroke remains limited.

View Article and Find Full Text PDF

Nucleic acid drugs, which trigger gene silencing by hybridizing with target genes, have shown great potential in targeting those undruggable targets. However, most of the existing nucleic acid drugs are only sequence specific for target genes and lack cellular or tissue selectivity, which challenges their therapeutic safety. Here, the study proposes a tumor cell-specific gene silencing strategy by using hairpin DNA oligonucleotides to trigger target RNA degrading by highly expressed endogenous flap endonuclease 1 (FEN1) in tumor cells, for selective tumor therapy.

View Article and Find Full Text PDF
Article Synopsis
  • The KCNQ1+KCNE1 potassium channel is vital for heart stress adaptation, where β-adrenergic stimulation enhances its activity via phosphorylation, essential for managing increased heart rates.
  • Variants in the KCNQ1 gene can lead to long-QT syndrome type 1 (LQT1), with some mutations making patients more susceptible to serious heart risks, but the details of how phosphorylation affects channel function and cAMP sensitivity are still unclear.
  • Research using techniques like patch clamp and induced pluripotent stem cells revealed key molecular features in LQT1 variants and identified a small molecule, ML277, that can restore function in high-risk mutations by targeting the phosphorylation axis of the channel.
View Article and Find Full Text PDF