Publications by authors named "Cheng-Hsuan Chiang"

The slow kinetics of ethanol oxidation reaction (EOR) has limited its widespread use for fuel cells. Bimetallic catalysts with optimized surface compositions can considerably govern rate-determining steps through selectivity for CH3COOH formation or by facilitating the adsorption of OHadsvia the bifunctional effect of an alloy to increase the EOR's kinetic rates. Here, we reported monodisperse ordered In-Pd nanoparticles as new bimetallic high-performance catalysts for EOR.

View Article and Find Full Text PDF

Human parechovirus 3 (HPeV3) is a picornavirus associated with neurologic disease in neonates. Human parechovirus 3 infection of preterm and term infants is associated with seizures and destructive periventricular white matter lesions. Despite unremarkable cerebrospinal fluid (CSF), HPeV3 RNA can be amplified from CSF and nasopharyngeal and rectal swabs.

View Article and Find Full Text PDF

Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes.

View Article and Find Full Text PDF

Background: Huntington's Disease (HD) is a devastating neurodegenerative disorder that clinically manifests as motor dysfunction, cognitive impairment and psychiatric symptoms. There is currently no cure for this progressive and fatal disorder. The causative mutation of this hereditary disease is a trinucleotide repeat expansion (CAG) in the Huntingtin gene that results in an expanded polyglutamine tract.

View Article and Find Full Text PDF

Somatic nuclei can be reprogrammed to pluripotency through fusion with embryonic stem cells (ESCs). The underlying mechanism is largely unknown, primarily because of a lack of effective approaches to monitor and quantitatively analyze transient, early reprogramming events. The transcription factor Oct4 is expressed specifically in pluripotent stem cells, and its reactivation from somatic cell genome constitutes a hallmark for effective reprogramming.

View Article and Find Full Text PDF