A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. | LitMetric

G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells.

Stem Cells

Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, 733 North Broadway, BRB735, Baltimore, Maryland 21205, USA.

Published: August 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Somatic nuclei can be reprogrammed to pluripotency through fusion with embryonic stem cells (ESCs). The underlying mechanism is largely unknown, primarily because of a lack of effective approaches to monitor and quantitatively analyze transient, early reprogramming events. The transcription factor Oct4 is expressed specifically in pluripotent stem cells, and its reactivation from somatic cell genome constitutes a hallmark for effective reprogramming. Here we developed a double fluorescent reporter system using engineered ESCs and adult neural stem cells/progenitors (NSCs) to simultaneously and independently monitor cell fusion and reprogramming-induced reactivation of transgenic Oct4-enhanced green fluorescent protein (EGFP) expression. We demonstrate that knockdown of a histone methyltransferase, G9a, or overexpression of a histone demethylase, Jhdm2a, promotes ESC fusion-induced Oct4-EGFP reactivation from adult NSCs. In addition, coexpression of Nanog and Jhdm2a further enhances the ESC-induced Oct4-EGFP reactivation. Interestingly, knockdown of G9a alone in adult NSCs leads to demethylation of the Oct4 promoter and partial reactivation of the endogenous Oct4 expression from adult NSCs. Our results suggest that ESC-induced reprogramming of somatic cells occurs with coordinated actions between erasure of somatic epigenome and transcriptional resetting to restore pluripotency. These mechanistic findings may guide more efficient reprogramming for future therapeutic applications of stem cells. Disclosure of potential conflicts of interest is found at the end of this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059405PMC
http://dx.doi.org/10.1634/stemcells.2008-0388DOI Listing

Publication Analysis

Top Keywords

stem cells
16
adult nscs
12
embryonic stem
8
adult neural
8
neural stem
8
oct4-egfp reactivation
8
stem
6
reprogramming
5
adult
5
cells
5

Similar Publications