Publications by authors named "Charles D Smart"

Background: The strongest genetic risk factors for atrial fibrillation (AF) are DNA variants on chromosome 4q25 near the transcription factor gene (Pitx2:Paired-like homeodomain transcription factor 2). Mice deficient in () have increased AF susceptibility, although the molecular mechanism(s) remains controversial. encodes a transcription factor that activates an antioxidant response to promote cardiac repair.

View Article and Find Full Text PDF

Aims: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF.

View Article and Find Full Text PDF

Aims: Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling.

Methods And Results: Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages.

View Article and Find Full Text PDF

Evidence from nonhuman animal models demonstrates an important role for immune cells in hypertension, but immune cell changes in human hypertension are less clear. Using mass cytometry, we demonstrate novel and selective reductions in CCR10 regulatory T cells (Tregs) and PD-1CD57CD8 memory T cells. RNA sequencing reveals that CCR10 Tregs exhibit gene expression changes consistent with enhanced immunosuppressive function.

View Article and Find Full Text PDF

Background: SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown.

View Article and Find Full Text PDF

We describe a mechanism responsible for systemic lupus erythematosus (SLE). In humans with SLE and in 2 SLE murine models, there was marked enrichment of isolevuglandin-adducted proteins (isoLG adducts) in monocytes and dendritic cells. We found that antibodies formed against isoLG adducts in both SLE-prone mice and humans with SLE.

View Article and Find Full Text PDF

Objective: To determine the impact of autoimmunity in the absence of glycemic alterations on pregnancy in type 1 diabetes (T1D).

Design: Because nonobese diabetic (NOD) mice experience autoimmunity before the onset of hyperglycemia, we studied pregnancy outcomes in prediabetic NOD mice using flow cytometry and enzyme-linked immunosorbent assays. Once we determined that adverse events in pregnancy occurred in euglycemic mice, we performed an exploratory study using electronic health records to better understand pregnancy complications in humans with T1D and normal hemoglobin A1c levels.

View Article and Find Full Text PDF

Background: Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated.

View Article and Find Full Text PDF

Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the global pandemic of coronavirus disease-2019 (COVID-19). SARS-CoV-2 is a zoonotic disease, but little is known about variations in species susceptibility that could identify potential reservoir species, animal models, and the risk to pets, wildlife, and livestock. Certain species, such as domestic cats and tigers, are susceptible to SARS-CoV-2 infection, while other species such as mice and chickens are not.

View Article and Find Full Text PDF

Aims: Elevated serum immunoglobulins have been associated with experimental and human hypertension for decades but whether immunoglobulins and B cells play a causal role in hypertension pathology is unclear. In this study, we sought to determine the role of B cells and high-affinity class-switched immunoglobulins on hypertension and hypertensive end-organ damage to determine if they might represent viable therapeutic targets for this disease.

Methods And Results: We purified serum immunoglobulin G (IgG) from mice exposed to vehicle or angiotensin (Ang) II to induce hypertension and adoptively transferred these to wild type (WT) recipient mice receiving a subpressor dose of Ang II.

View Article and Find Full Text PDF

T and B cells have been implicated in hypertension, but the mechanisms by which they produce a coordinated response is unknown. T follicular helper (Tfh) cells that produce interleukin 21 (IL21) promote germinal center (GC) B cell responses leading to immunoglobulin (Ig) production. Here we investigate the role of IL21 and Tfh cells in hypertension.

View Article and Find Full Text PDF