Publications by authors named "Chander S Digwal"

The complexity of disease biology extends beyond mutations or overexpression, encompassing stress-induced mechanisms that reshape proteins into pathological assemblies. Epichaperomes, stable and disease-specific assemblies of chaperones and co-chaperones, exemplify this phenomenon. This review emphasizes the critical structural and functional distinctions between epichaperomes and canonical chaperones, highlighting their role in redefining therapeutic strategies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) progresses as a continuum, from preclinical stages to late-stage cognitive decline, yet the molecular mechanisms driving this progression remain poorly understood. Here, we provide a systems-level map of protein-protein interaction (PPI) network dysfunction across the AD spectrum and uncover epichaperomes-stable scaffolding platforms formed by chaperones and co-factors-as central drivers of this process. Using over 100 human brain specimens, mouse models, and human neurons, we show that epichaperomes emerge early, even in preclinical AD, and progressively disrupt multiple PPI networks critical for synaptic function and neuroplasticity.

View Article and Find Full Text PDF

The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function.

View Article and Find Full Text PDF
Article Synopsis
  • Post-translational modifications like N-glycosylation can alter cell processes and contribute to diseases when dysregulated, particularly affecting proteins such as Grp94.
  • The study highlights a specific conformation of Grp94 caused by N-glycosylation, using molecular dynamics simulations to understand how different ligands interact with these altered forms.
  • By analyzing ligand interactions and their cytotoxicity, the research aims to develop drugs that specifically target harmful Grp94 conformations without affecting normal cellular functions.
View Article and Find Full Text PDF

Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control.

View Article and Find Full Text PDF

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function.

View Article and Find Full Text PDF

Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism.

View Article and Find Full Text PDF

Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation.

View Article and Find Full Text PDF

Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights.

View Article and Find Full Text PDF

Protein-assembly defects due to an enrichment of aberrant conformational protein variants are emerging as a new frontier in therapeutics design. Understanding the structural elements that rewire the conformational dynamics of proteins and pathologically perturb functionally oriented ensembles is important for inhibitor development. Chaperones are hub proteins for the assembly of multiprotein complexes and an enrichment of aberrant conformers can affect the cellular proteome, and in turn, phenotypes.

View Article and Find Full Text PDF

In spite of several attempts to develop newer pharmacophores as potential antimicrobial agents, the benzimidazole scaffold is still considered as one of the most sought after structural component towards the design of compounds that act against a wide spectrum of microbes. Herein, we report the design and synthesis of a new structural class of 4-(1,3-thiazol-2-yl)morpholine-benzimidazole hybrids as antimicrobial agents. The most potent analog, 6g shows IC of 1.

View Article and Find Full Text PDF
Article Synopsis
  • Epichaperomes are complex protein structures linked to diseases, made up of chaperones and co-chaperones, offering new avenues for precision medicine by targeting abnormal protein interactions.
  • The text outlines a protocol for creating and using two iodine-labeled probes, [I]-PU-H71 and [I]-PU-AD, which have been tested in clinical settings.
  • It details steps for using these probes to visualize and measure epichaperome presence in tumor-bearing mice via positron emission tomography, with references provided for further information.
View Article and Find Full Text PDF

Positron emission tomography with selective radioligands advances the drug discovery and development process by revealing information about target engagement, proof of mechanism, pharmacokinetic and pharmacodynamic profiles. Positron emission tomography (PET) is an essential and highly significant tool to study therapeutic drug development, dose regimen, and the drug plasma concentrations of new drug candidates. Selective radioligands bring up target-specific information in several disease states including cancer, cardiovascular, and neurological conditions by quantifying various rates of biological processes with PET, which are associated with its physiological changes in living subjects, thus it reveals disease progression and also advances the clinical investigation.

View Article and Find Full Text PDF

Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours.

View Article and Find Full Text PDF
Article Synopsis
  • Diseases arise from complex interactions between proteins, and conditions like cancer and Alzheimer's involve disrupted protein-protein interactions linked to altered chaperome structures known as epichaperomes.
  • Researchers have developed chemical probes aimed at targeting epichaperomes, with promising results in both cell and animal studies, as well as an initial study in human patients.
  • This work introduces a new platform for creating specialized chemical probes that can detect and modify epichaperomes, highlighting their potential application in treating and diagnosing central nervous system diseases.
View Article and Find Full Text PDF

The increasingly appreciated prevalence of complicated stressor-to-phenotype associations in human disease requires a greater understanding of how specific stressors affect systems or interactome properties. Many currently untreatable diseases arise due to variations in, and through a combination of, multiple stressors of genetic, epigenetic, and environmental nature. Unfortunately, how such stressors lead to a specific disease phenotype or inflict a vulnerability to some cells and tissues but not others remains largely unknown and unsatisfactorily addressed.

View Article and Find Full Text PDF

Cancer is often associated with alterations in the chaperome, a collection of chaperones, cochaperones, and other cofactors. Changes in the expression levels of components of the chaperome, in the interaction strength among chaperome components, alterations in chaperome constituency, and in the cellular location of chaperome members, are all hallmarks of cancer. Here we aim to provide an overview on how chemical biology has played a role in deciphering such complexity in the biology of the chaperome in cancer and in other diseases.

View Article and Find Full Text PDF

Synthesis of twenty new curcumin inspired 2-chloro/phenoxy quinoline derivatives is outlined in this study. The obtained new chemical entities were screened in vitro for their cytotoxic activity towards various tumor cell lines. Of the compounds screened, 6c and 9d exhibited significant activity and the most active analogue 6c displayed promising cytotoxicity against PC-3 (IC of 3.

View Article and Find Full Text PDF

With an aim to develop new curcumin inspired analogues as potent anticancer agents, we synthesized a series of (1E,4E)-1-phenyl-5-(3-phenylimidazo[1,2-a]pyridin-2-yl)penta-1,4-dien-3-ones (12a-t) as tubulin polymerization inhibitors. An initial screening was carried out to evaluate their cytotoxic potential on a panel of six cancer cell lines namely, cervical (HeLa), gastric (HGC-27), lung (NCI-H460), prostate (DU-145 and PC-3) and breast (4T1), using MTT assay. Among the compounds tested, compounds 12e, 12r and 12t showed potent growth inhibition and 12t {(1E,4E)-1-(3-(3,4-difluorophenyl)imidazo[1,2-a]pyridin-2-yl)-5-(2,4,6-trimethoxyphenyl)penta-1,4-dien-3-one} being the most active member of the series inhibited the growth of all the tested cell lines with IC values varying from 1.

View Article and Find Full Text PDF

A series of new imidazo[1,2-a]pyridine linked with thiazole/thiophene motif through a keto spacer were synthesized and tested for their cytotoxic potential against three human cancer cell lines including A549, HeLa and U87-MG using MTT assay. Compounds A2, A3, A4, C1 and C2 showed cytotoxicity against all the three cell lines. The selectivity index for compound A4 for A549 and HeLa cells was comparable to that of doxorubicin.

View Article and Find Full Text PDF
Article Synopsis
  • A series of sulfonamide derivatives inspired by curcumin were synthesized from chalcones and 4-sulfamoyl benzaldehyde through a specific chemical reaction called Claisen-Schmidt condensation.
  • These new compounds were tested for their ability to inhibit four different human carbonic anhydrase isoforms (hCA I, II, IX, and XII), which play roles in various diseases.
  • Results showed that the new sulfonamides had varying levels of inhibitory activity, with significant effectiveness against hCA II and hCA IX, making them potential candidates for treating glaucoma and cancer-related conditions.
View Article and Find Full Text PDF

A novel vanadium-catalyzed one-pot domino reaction of 1,2-diketones with amidines has been identified that enables their transformation into imides and amides. The reaction proceeds by dual acylation of amidines via oxidative C(CO)-C(CO) bond cleavage of 1,2-diketones to afford N,N'-diaroyl-N-arylbenzamidine intermediates. In the reaction, these intermediates are easily hydrolyzed into imides and amides through vanadium catalysis.

View Article and Find Full Text PDF