ACS Appl Mater Interfaces
February 2022
Hierarchical, ultrathin, and porous NiMoO@CoMoO on CoO hollow bones were successfully designed and synthesized by a hydrothermal route from the Co-precursor, followed by a KOH (potassium hydroxide) activation process. The hydrothermally synthesized CoO nanowires act as the scaffold for anchoring the NiMoO@CoMoO units but also show more compatibility with NiMoO, leading to high conductivity in the heterojunction. The intriguing morphological features endow the hierarchical CoO@NiMoO@CoMoO better electrochemical performance where the capacity of the CoO@NiMoO@CoMoO heterojunction being 272 mA·h·g at 1 A·g can be achieved with a superior retention of 84.
View Article and Find Full Text PDF