Microvascular injuries can have systemic physiological effects that exacerbate other injuries and pose a danger to life. Reliable in vitro microvascular models are required to enhance understanding of traumatic injuries. This research aims to develop and optimise a three-dimensional (3D) hydrogel construct for the formation and long-term stability of an in vitro microvascular model for trauma research.
View Article and Find Full Text PDFDimethylsulfoxide (DMSO) has conventionally been used for cell cryopreservation both in research and in clinical applications, but has long-term cytotoxic effects. Trehalose, a natural disaccharide, has been proposed as a non-toxic cryoprotectant. However, the lack of specific cell membrane transporter receptors inhibits transmembrane transport and severely limits its cryoprotective capability.
View Article and Find Full Text PDFIn regenerative medicine, ongoing advancements in cell culture techniques, including isolation, expansion, banking, and transport, are crucial for clinical success. Cryopreservation ensures off-the-freezer availability of living cells, enabling long-term storage and transport. Customizing cryopreservation techniques and cryoprotective agents (CPAs) for specific cell types is crucial for cell source quality, sustainability, safety, and therapeutic intervention efficiency.
View Article and Find Full Text PDFThe surge in 'Big data' has significantly influenced biomaterials research and development, with vast data volumes emerging from clinical trials, scientific literature, electronic health records, and other sources. Biocompatibility is essential in developing safe medical devices and biomaterials to perform as intended without provoking adverse reactions. Therefore, establishing an artificial intelligence (AI)-driven biocompatibility definition has become decisive for automating data extraction and profiling safety effectiveness.
View Article and Find Full Text PDFScientific information extraction is fundamental for research and innovation, but is currently mostly a manual, time-consuming process. Text Mining tools (TMTs) enable automated, accurate and quick information extraction from text, but there is little precedent of their use in the biomaterials field. Here, we compare the ability of various TMTs to extract useful information from biomaterials abstracts.
View Article and Find Full Text PDFBioengineering (Basel)
August 2023
Traumatic injuries are a major cause of morbidity and mortality worldwide; however, there is limited research on microvascular traumatic injuries. To address this gap, this research aims to develop and optimise an in vitro construct for traumatic injury research at the microvascular level. Tissue engineering constructs were created using a range of polymers (collagen, fibrin, and gelatine), solvents (PBS, serum-free endothelial media, and MES/NaCl buffer), and concentrations (1-5% /).
View Article and Find Full Text PDFBiomaterials research output has experienced an exponential increase over the last three decades. The majority of research is published in the form of scientific articles and is therefore available as unstructured text, making it a challenging input for computational processing. Computational tools are becoming essential to overcome this information overload.
View Article and Find Full Text PDFEBioMedicine
February 2022
Background: The manufacturing of any standard mechanical ventilator cannot rapidly be upscaled to several thousand units per week, largely due to supply chain limitations. The aim of this study was to design, verify and perform a pre-clinical evaluation of a mechanical ventilator based on components not required for standard ventilators, and that met the specifications provided by the Medicines and Healthcare Products Regulatory Agency (MHRA) for rapidly-manufactured ventilator systems (RMVS).
Methods: The design utilises closed-loop negative feedback control, with real-time monitoring and alarms.
Nanomaterials (Basel)
October 2020
Electrospinning is a versatile technique to produce nano/microscale fibrous scaffolds for tissue engineering and drug delivery applications. This research aims to demonstrate that hyaluronic acid-chitosan (HA-CS) nanoparticles can be electrospun together with polycaprolactone (PCL) and gelatine (Ge) fibres using a portable device to create scaffolds for tissue repair. A range of polymer solutions of PCL-gelatine at different weight/volume concentrations and ratios were electrospun and characterised.
View Article and Find Full Text PDF