Deficits in mitochondrial function and redox deregulation have been attributed to Huntington's disease (HD), a genetic neurodegenerative disorder largely affecting the striatum. However, whether these changes occur in early stages of the disease and can be detected in vivo is still unclear. In the present study, we analysed changes in mitochondrial function and production of reactive oxygen species (ROS) at early stages and with disease progression.
View Article and Find Full Text PDFAngelman Syndrome is a rare neurodevelopmental disorder caused by several (epi)genetic alterations. The patients present strong neurological impairment due to the absence of a functional maternal UBE3A gene in neurons. Here, we generated and characterized a new induced pluripotent stem cell (iPSC) line from a female child with Angelman syndrome harbouring a class II deletion.
View Article and Find Full Text PDFNeurotherapeutics
April 2021
Pridopidine is a selective Sigma-1 receptor (S1R) agonist in clinical development for Huntington disease (HD) and amyotrophic lateral sclerosis. S1R is a chaperone protein localized in mitochondria-associated endoplasmic reticulum (ER) membranes, a signaling platform that regulates Ca signaling, reactive oxygen species (ROS) and mitochondrial fission. Here, we investigate the protective effects of pridopidine on various mitochondrial functions in human and mouse HD models.
View Article and Find Full Text PDFAngelman syndrome (AS) is an incurable neurodevelopmental disease caused by loss of function of the maternally inherited UBE3A gene. AS is characterized by a defined set of symptoms, namely severe developmental delay, speech impairment, uncontrolled laughter, and ataxia. Current understanding of the pathophysiology of AS relies mostly on studies using the murine model of the disease, although alternative models based on patient-derived stem cells are now emerging.
View Article and Find Full Text PDF