Purpose: Conformal dose distributions in proton radiotherapy promise to reduce normal tissue toxicity such as radiation-induced pneumonitis, but this has not been fully realized in clinical trials. To further investigate dose and toxicity, we employ voxel-based normal tissue evaluation techniques such as ventilation maps throughout treatment. We hypothesize that ventilation change after 1 week of treatment (WK1) predicts for ventilation change at the end of treatment (EOT).
View Article and Find Full Text PDFTreatment of non-small cell lung cancer with proton therapy allows for delivery of high radiation dose while sparing critical normal tissue structures compared to conventional photon therapy. However, there are currently no established clinical endpoints to study the biological effect between these radiation modalities. Computed tomography (CT) imaging allows for extraction of ventilation through deformable image registration of 4DCTs and may provide information on imaging-based functional changes in the lung.
View Article and Find Full Text PDFJ Comput Assist Tomogr
July 2025
Objective: To compare the predictive value of minimal ablative margin (MAM) quantification using tumor segmentation on intraprocedural contrast-enhanced hepatic arterial (HAP) versus portal venous phase (PVP) CT on local outcomes following percutaneous thermal ablation of colorectal liver metastases (CRLM).
Methods: This dual-center retrospective study included patients undergoing thermal ablation of CRLM with intraprocedural preablation and postablation contrast-enhanced CT imaging between 2009 and 2021. Tumors were segmented in both HAP and PVP CT phases using an artificial intelligence-based auto-segmentation model and reviewed by a trained radiologist.
Background: Tumour coverage with an optimal minimal ablative margin is crucial for improving local control of liver tumours following thermal ablation. The minimal ablative margin has traditionally been assessed through visual inspection of co-registered CT images. However, rates of local tumour control after thermal ablation are highly variable with visual assessment.
View Article and Find Full Text PDFBr J Surg
August 2024
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net ([Formula: see text] and 3d full resolution of nnU-Net ([Formula: see text] to determine the best architecture ([Formula: see text].
View Article and Find Full Text PDFObjectives: The aim of this study was to investigate the prognostic value of 3-dimensional minimal ablative margin (MAM) quantified by intraprocedural versus initial follow-up computed tomography (CT) in predicting local tumor progression (LTP) after colorectal liver metastasis (CLM) thermal ablation.
Materials And Methods: This single-institution, patient-clustered, tumor-based retrospective study included patients undergoing microwave and radiofrequency ablation between 2016 and 2021. Patients without intraprocedural and initial follow-up contrast-enhanced CT, residual tumors, or with follow-up less than 1 year without LTP were excluded.