Understanding the spatial distribution of gene expression in the pancreas is essential for establishing the molecular basis of pancreatic function in healthy and disease contexts. Recent platforms offer a robust method for quantifying gene expression within a spatial context. Here, we report spatial transcriptomic profiling from pancreas samples obtained from three donors with type 2 diabetes (T2D) and three donors with normal glucose tolerance (NGT).
View Article and Find Full Text PDFIEEE Open J Eng Med Biol
September 2024
In the medical diagnostics domain, pathology and histology are pivotal for the precise identification of diseases. Digital histopathology, enhanced by automation, facilitates the efficient analysis of massive amount of biopsy images produced on a daily basis, streamlining the evaluation process. This study focuses in Stain Color Normalization (SCN) within a Whole-Slide Image (WSI) cohort, aiming to reduce batch biases.
View Article and Find Full Text PDFAims/hypothesis: Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes.
View Article and Find Full Text PDFDisruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycemia, beta cell glucotoxicity, and ultimately type 2 diabetes (T2D). In this study, we sought to explore the effects of hyperglycemia on human pancreatic islet (HPI) gene expression by exposing HPIs from two donors to low (2.8mM) and high (15.
View Article and Find Full Text PDFIEEE Open J Eng Med Biol
January 2023
Histopathologic evaluation of Hematoxylin & Eosin (H&E) stained slides is essential for disease diagnosis, revealing tissue morphology, structure, and cellular composition. Variations in staining protocols and equipment result in images with color nonconformity. Although pathologists compensate for color variations, these disparities introduce inaccuracies in computational whole slide image (WSI) analysis, accentuating data domain shift and degrading generalization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Glioblastoma ( ) is the most aggressive type of primary malignant adult brain tumor, with very heterogeneous radio-graphic, histologic, and molecular profiles. A growing body of advanced computational analyses are conducted towards further understanding the biology and variation in glioblastoma. To address the intrinsic heterogeneity among different computational studies, reference standards have been established to facilitate both radiographic and molecular analyses, e.
View Article and Find Full Text PDF