Background: Most genomic prediction applications in animal breeding use genotypes with tens of thousands of single nucleotide polymorphisms (SNPs). However, modern sequencing technologies and imputation algorithms can generate ultra-high-density genotypes (including millions of SNPs) at an affordable cost. Empirical studies have not produced clear evidence that using ultra-high-density genotypes can significantly improve prediction accuracy.
View Article and Find Full Text PDFGenet Sel Evol
September 2022
Background: Early simulations indicated that whole-genome sequence data (WGS) could improve the accuracy of genomic predictions within and across breeds. However, empirical results have been ambiguous so far. Large datasets that capture most of the genomic diversity in a population must be assembled so that allele substitution effects are estimated with high accuracy.
View Article and Find Full Text PDFBackground: It is expected that functional, mainly missense and loss-of-function (LOF), and regulatory variants are responsible for most phenotypic differences between breeds and genetic lines of livestock species that have undergone diverse selection histories. However, there is still limited knowledge about the existing missense and LOF variation in commercial livestock populations, in particular regarding population-specific variation and how it can affect applications such as across-breed genomic prediction.
Methods: We re-sequenced the whole genome of 7848 individuals from nine commercial pig lines (average sequencing coverage: 4.
In the pig industry, purebred animals are raised in nucleus herds and selected to produce crossbred progeny to perform in commercial environments. Crossbred and purebred performances are different, correlated traits. All purebreds in a pen have their performance assessed together at the end of a performance test.
View Article and Find Full Text PDFComputer vision systems (CVS) have been shown to be a powerful tool for the measurement of live pig body weight (BW) with no animal stress. With advances in precision farming, it is now possible to evaluate the growth performance of individual pigs more accurately. However, important traits such as muscle and fat deposition can still be evaluated only via ultrasound, computed tomography, or dual-energy x-ray absorptiometry.
View Article and Find Full Text PDFPig production in the United States is based on multi-site systems in which pigs are transported between farms after the conclusion of each particular production phase. Although ground transportation is a critical component of the pork supply chain, it might constitute a potential route of infectious disease dissemination. Here, we used a time series network analysis to: (1) describe pig movement flow in a multi-site production system in Iowa, USA, (2) conduct percolation analysis to investigate network robustness to interventions for diseases with different transmissibility, and (3) assess the potential impact of each farm type on disease dissemination across the system.
View Article and Find Full Text PDFNetwork based statistical models accounting for putative causal relationships among multiple phenotypes can be used to infer single-nucleotide polymorphism (SNP) effect which transmitting through a given causal path in genome-wide association studies (GWAS). In GWAS with multiple phenotypes, reconstructing underlying causal structures among traits and SNPs using a single statistical framework is essential for understanding the entirety of genotype-phenotype maps. A structural equation model (SEM) can be used for such purposes.
View Article and Find Full Text PDFIn animal production, it is often important to investigate causal relationships among variables. The gold standard tool for such investigation is randomized experiments. However, randomized experiments may not always be feasible, possible, or cost effective or reflect real-world farm conditions.
View Article and Find Full Text PDFBackground: Genomic selection has been successfully implemented in plant and animal breeding programs to shorten generation intervals and accelerate genetic progress per unit of time. In practice, genomic selection can be used to improve several correlated traits simultaneously via multiple-trait prediction, which exploits correlations between traits. However, few studies have explored multiple-trait genomic selection.
View Article and Find Full Text PDFBackground: Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations.
View Article and Find Full Text PDFBackground: The objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models.
Methods: Phenotypic data from 1756 Nellore steers from ten commercial herds in Brazil were used. Animals were offspring of 294 sires and 1546 dams, reared on pasture, feedlot finished, and slaughtered at approximately 2 years of age.
Background: Joint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of connectedness among these variables. Current studies mainly report associations, i.e.
View Article and Find Full Text PDFBackground: Recently, selection for milk technological traits was initiated in the Italian dairy cattle industry based on direct measures of milk coagulation properties (MCP) such as rennet coagulation time (RCT) and curd firmness 30 min after rennet addition (a30) and on some traditional milk quality traits that are used as predictors, such as somatic cell score (SCS) and casein percentage (CAS). The aim of this study was to shed light on the causal relationships between traditional milk quality traits and MCP. Different structural equation models that included causal effects of SCS and CAS on RCT and a30 and of RCT on a30 were implemented in a Bayesian framework.
View Article and Find Full Text PDFThe term "effect" in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies.
View Article and Find Full Text PDFThe prediction of total egg production (TEP) potential in poultry is an important task to aid optimized management decisions in commercial enterprises. The objective of the present study was to compare different modeling approaches for prediction of TEP in meat type quails (Coturnix coturnix coturnix) using phenotypes such as weight, weight gain, egg production and egg quality measurements. Phenotypic data on 30 traits from two lines (L1, n=180; and L2, n=205) of quail were modeled to predict TEP.
View Article and Find Full Text PDFBackground: Knowledge regarding causal relationships among traits is important to understand complex biological systems. Structural equation models (SEM) can be used to quantify the causal relations between traits, which allow prediction of outcomes to interventions applied to such a network. Such models are fitted conditionally on a causal structure among traits, represented by a directed acyclic graph and an Inductive Causation (IC) algorithm can be used to search for causal structures.
View Article and Find Full Text PDFMethods Mol Biol
December 2013
Complex networks with causal relationships among variables are pervasive in biology. Their study, however, requires special modeling approaches. Structural equation models (SEM) allow the representation of causal mechanisms among phenotypic traits and inferring the magnitude of causal relationships.
View Article and Find Full Text PDFStructural equation models (SEMs) are multivariate specifications capable of conveying causal relationships among traits. Although these models offer insights into how phenotypic traits relate to each other, it is unclear whether and how they can improve multiple-trait selection. Here, we explored concepts involved in SEMs, seeking for benefits that could be brought to breeding programs, relative to the standard multitrait model (MTM) commonly used.
View Article and Find Full Text PDFBackground: Structural equation models (SEM) are used to model multiple traits and the casual links among them. The number of different causal structures that can be used to fit a SEM is typically very large, even when only a few traits are studied. In recent applications of SEM in quantitative genetics mixed model settings, causal structures were pre-selected based on prior beliefs alone.
View Article and Find Full Text PDFPhenotypic traits may exert causal effects between them. For example, on the one hand, high yield in dairy cows may increase the liability to certain diseases and, on the other hand, the incidence of a disease may affect yield negatively. Likewise, the transcriptome may be a function of the reproductive status in mammals and the latter may depend on other physiological variables.
View Article and Find Full Text PDFBiology is characterized by complex interactions between phenotypes, such as recursive and simultaneous relationships between substrates and enzymes in biochemical systems. Structural equation models (SEMs) can be used to study such relationships in multivariate analyses, e.g.
View Article and Find Full Text PDF