To explore how anion substitution modifies the existing magnetism in strongly correlated oxides, we investigate local electronic states and magnetic ordering in nickel oxide (NiO) induced by substituting oxygen (O) with nitrogen (N). Each N introduces an additional N 2p hole and modifies the magnetic moment of a neighboring nickel (Ni) cation site, as the exchange interaction between this hole and the Ni e_{g} electrons exceeds the Ni-O-Ni superexchange interaction. This leads to the formation of Ni-N-Ni centers consisting of five spins, without perturbing the antiferromagnetic NiO lattice.
View Article and Find Full Text PDFNanomedicine (Lond)
April 2025
Background: Nanomedicine offers a number of innovative strategies to address major public health burdens, including complex respiratory illnesses. In this work, we introduce a multi-drug nanoparticle fabricated using femtosecond laser ablation for the treatment of influenza, SARS-CoV-2, and their co-infections.
Methods: The SARS-CoV-2 antiviral, remdesivir; the influenza antiviral, baloxavir marboxil; and the anti-inflammatory, dexamethasone, were co-crystalized and then ablated in aqueous media using a femtosecond pulsed laser and subsequently surface modified with the cationic polymer, chitosan, or poly-d-lysine.
Nucleic Acids Res
February 2025
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles (VLPs) are ∼100-nm-sized bioinspired mimetics of the authentic virus. We undertook molecular engineering to optimize the VLP platform for messenger RNA (mRNA) delivery. Cloning the nucleocapsid protein upstream of M-IRES-E resulted in a three-plasmid (3P) VLP system that displayed ∼7-fold higher viral entry efficiency compared with VLPs formed by co-transfection with four plasmids.
View Article and Find Full Text PDFNanoparticles can be used for drug delivery and consist of many sizes and chemical compositions. They can accommodate a diverse population of drugs and can be made to target specific areas of the body. Fabrication methods generally follow either top-down or bottom-up manufacturing techniques, which have differing production controls, which determine nanoparticle characteristics including but not limited to size and encapsulation efficiency.
View Article and Find Full Text PDFInclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles.
View Article and Find Full Text PDFIntranasal vaccination offers the potential advantage of needle-free prevention of respiratory pathogens such as influenza viruses with induction of mucosal immune responses. Optimal design of adjuvants and antigen delivery vehicles for intranasal delivery has not yet been well established. Here, we report that an adjuvant-containing nanoliposome antigen display system that converts soluble influenza hemagglutinin antigens into nanoparticles is effective for intranasal immunization.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2021
Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2021
Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice.
View Article and Find Full Text PDFStreptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx (NP) but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human coinfection.
View Article and Find Full Text PDFTitanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state.
View Article and Find Full Text PDFInfluenza is a highly contagious respiratory virus that causes mild to severe respiratory illness, as well as death, and remains a serious threat to human health. Annual vaccination is the most cost-effective way to control influenza; however, the vaccine does not provide protection against emerging strains with epidemic and pandemic potential. Several antivirals have been developed to treat influenza but there is a rapid emergence of antiviral resistant strains.
View Article and Find Full Text PDFThe receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2020
Retinoic acid-inducible gene-I (RIG-I) is a cytosolic pathogen sensor that is crucial against a number of viral infections. Many viruses have evolved to inhibit pathogen sensors to suppress host innate immune responses. In the case of influenza, nonstructural protein 1 (NS1) suppresses RIG-I function, leading to viral replication, morbidity, and mortality.
View Article and Find Full Text PDFHistorically, volatile anesthetics have demonstrated interesting interactions with both the innate and adaptive immune systems. This review organizes these interactions into four phases: recognition, recruitment, response, and resolution. These phases represent a range of proinflammatory, inflammatory, and innate and adaptive immune regulatory responses.
View Article and Find Full Text PDFCommensal organisms with the potential to cause disease pose a challenge in developing treatment options. Using the example featured in this study, pneumococcal disease begins with colonization, followed by triggering events that prompt the release of a virulent subpopulation of bacteria. Current vaccines focus on colonization prevention, which poses unintended consequences of serotype niche replacement.
View Article and Find Full Text PDFAcid pneumonitis is a major cause of sterile acute lung injury (ALI) in humans. Acid pneumonitis spans the clinical spectrum from asymptomatic to acute respiratory distress syndrome (ARDS), characterized by neutrophilic alveolitis, and injury to both alveolar epithelium and vascular endothelium. Clinically, ARDS is defined by acute onset of hypoxemia, bilateral patchy pulmonary infiltrates and non-cardiogenic pulmonary edema.
View Article and Find Full Text PDFNano Lett
February 2017
We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES).
View Article and Find Full Text PDFThe type and potency of an immune response provoked during vaccination will determine ultimate success in disease prevention. The basis for this response will be the design and implementation of antigen presentation to the immune system. Whereas direct antigen administration will elicit some form of immunological response, a more sophisticated approach would couple the antigen of interest to a vector capable of broad delivery formats and designed for heightened response.
View Article and Find Full Text PDFImmunization strategies against commensal bacterial pathogens have long focused on eradicating asymptomatic carriage as well as disease, resulting in changes in the colonizing microflora with unknown future consequences. Additionally, current vaccines are not easily adaptable to sequence diversity and immune evasion. Here, we present a "smart" vaccine that leverages our current understanding of disease transition from bacterial carriage to infection with the pneumococcus serving as a model organism.
View Article and Find Full Text PDFAGEs are a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with free amino groups of proteins, lipids, and/or nucleic acids. AGEs have been shown to play a role in various conditions including cardiovascular disease and diabetes. In this study, we hypothesized that AGEs play a role in the "multiple hit hypothesis" of nonalcoholic fatty liver disease (NAFLD) and contribute to the pathogenesis of hepatosteatosis.
View Article and Find Full Text PDFBackground: To minimize the risk of pneumonia, many anesthesiologists delay anesthesia-requiring procedures when patients exhibit signs of viral upper respiratory tract infection. Postinfluenza secondary bacterial pneumonias (SBPs) are a major cause of morbidity and mortality. An increased host susceptibility to SBP postinfluenza has been attributed to physical damage to the pulmonary epithelium, but flu-induced effects on the immune system are being shown to also play an important role.
View Article and Find Full Text PDFThe siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined.
View Article and Find Full Text PDFNeuropathic pain is a chronic pain syndrome that arises from nerve injury. Current treatments only offer limited relief, clearly indicating the need for more effective therapeutic strategies. Previously, we demonstrated that proinflammatory tumor necrosis factor-alpha (TNF) is a key mediator of neuropathic pain pathogenesis; TNF is elevated at sites of neuronal injury, in the spinal cord, and supraspinally during the initial development of pain.
View Article and Find Full Text PDFBackground: Gastric aspiration is a significant cause of acute lung injury and acute respiratory distress syndrome. Environmental risk factors, such as a diet high in proinflammatory advanced glycation end-products (AGEs), may render some patients more susceptible to lung injury after aspiration. We hypothesized that high dietary AGEs increase its pulmonary receptor, RAGE, producing an amplified pulmonary inflammatory response in the presence of high mobility group box 1 (HMGB1), a RAGE ligand and an endogenous signal of epithelial cell injury after aspiration.
View Article and Find Full Text PDF