Publications by authors named "Bridget Simonson"

Background: Heart failure with preserved ejection fraction (HFpEF) is a poorly understood, multi-system disease with high morbidity and mortality. To improve our understanding of its underlying biology, we used single-nucleus RNA sequencing (snRNA-seq) to characterize cell-specific gene expression patterns in human HFpEF myocardium.

Methods: Septal myocardial biopsies (2-3 mg) from 30 HFpEF patients and 29 non-failing donor controls were analyzed using the 10X Genomics platform, with nuclei isolated from combined samples (6 patients/pool).

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common heart rhythm abnormality and is a leading cause of heart failure and stroke. This large-scale meta-analysis of genome-wide association studies increased the power to detect single-nucleotide variant associations and found more than 350 AF-associated genetic loci. We identified candidate genes related to muscle contractility, cardiac muscle development and cell-cell communication at 139 loci.

View Article and Find Full Text PDF

Introduction: Indigenous communities globally are inequitably affected by non-communicable diseases such as cancer and coronary artery disease. Increased focus on personalized medicine approaches for the treatment of these diseases offers opportunities to improve the health of Indigenous people. Conversely, poorly implemented approaches pose increased risk of further exacerbating current inequities in health outcomes for Indigenous peoples.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, yet the molecular basis of AF remains incompletely understood. To determine the cell type-specific transcriptional changes underlying AF, we perform single-nucleus RNA-seq (snRNA-seq) on left atrial (LA) samples from patients with AF and controls. From more than 175,000 nuclei we find that only cardiomyocytes (CMs) and macrophages (MΦs) have a significant number of differentially expressed genes in patients with AF.

View Article and Find Full Text PDF

Ischemic cardiomyopathy (ICM) is the leading cause of heart failure worldwide, yet the cellular and molecular signature of this disease is largely unclear. Using single-nucleus RNA sequencing (snRNA-seq) and integrated computational analyses, we profile the transcriptomes of over 99,000 human cardiac nuclei from the non-infarct region of the left ventricle of 7 ICM transplant recipients and 8 non-failing (NF) controls. We find the cellular composition of the ischemic heart is significantly altered, with decreased cardiomyocytes and increased proportions of lymphatic, angiogenic, and arterial endothelial cells in patients with ICM.

View Article and Find Full Text PDF

Background: Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue.

Methods: Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm.

View Article and Find Full Text PDF

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts.

View Article and Find Full Text PDF

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools.

View Article and Find Full Text PDF

Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile.

View Article and Find Full Text PDF

Extracellular RNAs are initiating increased interest due to their potentials in serving as novel biomarkers, mediators of intercellular communication, and therapeutic applications. As a newly emerging field, one of the main obstacles is the lack of standardized protocols for RNA isolations. Here we describe protocols for commercially available kits that have been modified to yield consistent results for isolation of extracellular RNA from both whole serum/plasma and extracellular vesicle-enriched serum/plasma samples.

View Article and Find Full Text PDF

Extracellular RNAs are emerging as novel biomarkers and mediators of intercellular communication. Various methods to isolate RNA from biofluids and cell culture supernatants have been previously used by investigators. Here, we describe several standardized protocols for the isolation of RNAs from cell culture supernatants that utilize commercially available kits and reagents.

View Article and Find Full Text PDF

Alterations in sodium flux (I) play an important role in the pathogenesis of cardiac arrhythmias and may also contribute to the development of cardiomyopathies. We have recently demonstrated a critical role for the regulation of the voltage-gated sodium channel Na1.5 in the heart by the serum and glucocorticoid regulated kinase-1 (SGK1).

View Article and Find Full Text PDF

Physiological cardiac hypertrophy, in response to stimuli such as exercise, is considered adaptive and beneficial. In contrast, pathological cardiac hypertrophy that arises in response to pathological stimuli such as unrestrained high blood pressure and oxidative or metabolic stress is maladaptive and may precede heart failure. We found that the transcript encoding DNA damage-inducible transcript 4-like (DDiT4L) was expressed in murine models of pathological cardiac hypertrophy but not in those of physiological cardiac hypertrophy.

View Article and Find Full Text PDF

Background: Biomarkers that predict response to cardiac resynchronization therapy (CRT) in heart failure patients with dyssynchrony (HFDYS) would be clinically important. Circulating extracellular microRNAs (miRNAs) have emerged as novel biomarkers that may also play important functional roles, but their relevance as markers for CRT response has not been examined.

Methods And Results: Comprehensive miRNA polymerase chain reaction arrays were used to assess baseline levels of 766 plasma miRNAs in patients undergoing clinically indicated CRT in an initial discovery set (n=12) with and without subsequent echocardiographic improvement at 6 months after CRT.

View Article and Find Full Text PDF

MicroRNAs are short noncoding 18-25 nucleotide long RNA which bind and inhibit mRNA. Currently, there are over 1000 known human microRNAs, and microRNAs control over 50% of mammalian protein coding genes. MicroRNAs can be overexpressed or repressed in different diseases and inhibition or replacement of microRNAs is a promising area of study for therapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • Salvinorin A (SalA) is a selective κ-opioid receptor agonist that leads to dysphoria and depressive-like effects, mainly by inhibiting dopamine release.
  • SalA activates dopamine transporters (DAT) and forms complexes with κ-opioid receptors (KOR), enhancing DAT function while decreasing serotonin transporter (SERT) activity.
  • The interaction between DAT and KOR, mediated by the ERK1/2 signaling pathway, suggests that the overall increase in DAT activity and decrease in dopamine signaling contribute to the negative mood effects associated with SalA.
View Article and Find Full Text PDF

Background: A recent genome-wide association study identified a susceptibility locus for atrial fibrillation at the KCNN3 gene. Since the KCNN3 gene encodes for a small conductance calcium-activated potassium channel, we hypothesized that overexpression of the SK3 channel increases susceptibility to cardiac arrhythmias.

Methods And Results: We characterized the cardiac electrophysiological phenotype of a mouse line with overexpression of the SK3 channel.

View Article and Find Full Text PDF

Background: Cardiomyocyte hypertrophy is a critical precursor to the development of heart failure. Methods to phenotype cellular hypertrophy noninvasively are limited. The goal was to validate a cardiac magnetic resonance-based approach for the combined assessment of extracellular matrix expansion and cardiomyocyte hypertrophy.

View Article and Find Full Text PDF