Publications by authors named "Brian J Enquist"

Plant functional trait-based approaches are powerful tools to assess the consequences of global environmental changes for plant ecophysiology, population and community ecology, ecosystem functioning, and landscape ecology. Here, we present data capturing these ecological dimensions from grazing, nitrogen addition, and warming experiments conducted along a 821 m a.s.

View Article and Find Full Text PDF

Increasing drought pressure under anthropogenic climate change may jeopardize the potential of tropical forests to capture carbon in woody biomass and act as a long-term carbon dioxide sink. To evaluate this risk, we assessed drought impacts in 483 tree-ring chronologies from across the tropics and found an overall modest stem growth decline (2.5% with a 95% confidence interval of 2.

View Article and Find Full Text PDF

Tree species worldwide face increasing exposure to unprecedented macroclimatic conditions due to anthropogenic climate change, which may trigger biome shifts and ecosystem disruptions. We quantified climate change exposure-shifts to species' currently unoccupied climate zones-for 32,089 tree species globally by 2100, assessing both species-level and local tree diversity risks. On average, 69% of species are predicted to experience macroclimatic shifts in at least 10% of their range, while 14% face exposure in over 50% of their range under a high-emission (4 °C warming) future scenario.

View Article and Find Full Text PDF

Premise: Within plant communities, few species are abundant, and most are locally rare. Worldwide, 36% of plant species are exceedingly rare and often face high extinction risk. However, the community phylogenetic impact of the loss of rare plants is largely unknown in many systems.

View Article and Find Full Text PDF

Leaf venation architecture varies greatly among living and fossil plants. However, we still have a limited understanding of when, why and in which clades new architectures arose and how they impacted leaf functioning. Using data from 1,000 extant and extinct (fossil) plants, we reconstructed approximately 400 million years of venation evolution across clades and vein sizes.

View Article and Find Full Text PDF

Using county-level data from the United States, we assessed allometric scaling relationships of coronavirus disease (COVID-19) cases, deaths and age structure within and across the first four major waves of the pandemic (wild-type, alpha, delta, omicron). Results generally indicate that the burden of cases disproportionately impacted larger-sized counties, while the burden of deaths disproportionately impacted smaller counties. This may be partially due to multiple interacting social mechanisms, including a higher proportion of older adults who live in smaller counties.

View Article and Find Full Text PDF

Premise: Leaf mass per area (LMA) links leaf economic strategies, community assembly, and climate and can be reconstructed from woody non-monocot angiosperm (WNMA) fossils using the petiole metric (PM; petiole width/leaf area). Reliable interpretation of LMA reconstructed from the fossil record is limited by an incomplete understanding of how PM and LMA are correlated at the community scale and what climatic parameters drive variation of both measured and reconstructed LMA of WNMAs globally.

Methods: A modern, global, community-scale data set of in situ WNMA LMA and PM was compiled to test leading hypotheses for environmental drivers of LMA and quantify LMA-PM relationships.

View Article and Find Full Text PDF

Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate.

View Article and Find Full Text PDF

Tropical forest canopies are the biosphere's most concentrated atmospheric interface for carbon, water and energy. However, in most Earth System Models, the diverse and heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either a singular or a small number of fixed canopy ecophysiological properties. This situation arises, in part, from a lack of understanding about how and why the functional properties of tropical forest canopies vary geographically.

View Article and Find Full Text PDF

Droughts are a natural hazard of growing concern as they are projected to increase in frequency and severity for many regions of the world. The identification of droughts and their future characteristics is essential to building an understanding of the geography and magnitude of potential drought change trajectories, which in turn is critical information to manage drought resilience across multiple sectors and disciplines. Adding to this effort, we developed a dataset of global historical and projected future drought indices over the 1980-2100 period based on downscaled CMIP6 models across multiple shared socioeconomic pathways (SSP).

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF

Understanding trait-trait coordination is essential for successful plant breeding and crop modeling. Notably, plant size drives variation in morphological, physiological, and performance-related traits, as described by allometric laws in ecology. Yet, as allometric relationships have been limitedly studied in crops, how they influence and possibly limit crop performance remains unknown.

View Article and Find Full Text PDF

Biologists increasingly rely on computer code to collect and analyze their data, reinforcing the importance of published code for transparency, reproducibility, training, and a basis for further work. Here, we conduct a literature review estimating temporal trends in code sharing in ecology and evolution publications since 2010, and test for an influence of code sharing on citation rate. We find that code is rarely published (only 6% of papers), with little improvement over time.

View Article and Find Full Text PDF

Increasing the speed of scientific progress is urgently needed to address the many challenges associated with the biosphere in the Anthropocene. Consequently, the critical question becomes: How can science most rapidly progress to address large, complex global problems? We suggest that the lag in the development of a more predictive science of the biosphere is not only because the biosphere is so much more complex, or because we do not have enough data, or are not doing enough experiments, but, in large part, because of unresolved tension between the three dominant scientific cultures that pervade the research community. We introduce and explain the concept of the three scientific cultures and present a novel analysis of their characteristics, supported by examples and a formal mathematical definition/representation of what this means and implies.

View Article and Find Full Text PDF

In the Anthropocene, intensifying ecological disturbances pose significant challenges to our predictive capabilities for ecosystem responses. Macroecology-which focuses on emergent statistical patterns in ecological systems-unveils consistent regularities in the organization of biodiversity and ecosystems. These regularities appear in terms of abundance, body size, geographical range, species interaction networks, or the flux of matter and energy.

View Article and Find Full Text PDF
Article Synopsis
  • Alpine grasslands are crucial for biodiversity but face threats from climate change and environmental shifts, prompting research into how vegetation reacts to these changes for better ecosystem understanding.* -
  • Researchers studied plant traits in Puna grasslands in the Peruvian Andes across 1314 meters in elevation, gathering data on plant composition, biomass, climate, and more over three years.* -
  • The study resulted in a comprehensive dataset with 3,665 plant records and 54,036 trait measurements, significantly enhancing existing knowledge of local flora by 420% and including many previously undocumented plant traits.*
View Article and Find Full Text PDF
Article Synopsis
  • New research indicates that lianas (woody vines) are competing with trees in disturbed forests, threatening the recovery processes and the global carbon sink.
  • The study analyzed data from 651 vegetation samples globally and found that lianas thrive better than trees in disturbed areas with warmer temperatures, lower rainfall, and tropical lowland conditions.
  • High liana competition can hinder forest recovery for decades under specific climatic conditions, highlighting the need for targeted restoration strategies in tropical forests to mitigate potential impacts on carbon storage.
View Article and Find Full Text PDF

Trees are pivotal to global biodiversity and nature's contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.

View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Across the globe, tree species are under high anthropogenic pressure. Risks of extinction are notably more severe for species with restricted ranges and distinct evolutionary histories. Here, we use a global dataset covering 41,835 species (65.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF

The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF