Publications by authors named "Brad R Evans"

The growth of therapeutic monoclonal antibodies (mAbs) continues to accelerate due to their success as treatments for many diseases. As new therapeutics are developed, it is increasingly important to have robust bioanalytical methods to measure the pharmacokinetics (PK) of circulating therapeutic mAbs in serum. Ligand-binding assays such as enzyme-linked immunosorbent assays (ELISAs) with anti-idiotypic antibodies (anti-IDs) targeting the variable regions of the therapeutic antibody are sensitive and specific bioanalytical methods to measure levels of therapeutic antibodies in a biological matrix.

View Article and Find Full Text PDF

: HIV cure-directed clinical trials using analytical treatment interruptions (ATIs) require participants to adhere to frequent monitoring visits for viral load tests. Novel viral load monitoring strategies are needed to decrease participant burden during ATIs.: To examine acceptability of a novel home-based blood collection device for viral load testing in the context of two ongoing ATI trials in Philadelphia, PA, United States.

View Article and Find Full Text PDF

Background: People with HIV (PWH) and community members have advocated for the development of a home-based viral load test device that could make analytical treatment interruptions (ATIs) less burdensome.

Objective: We assessed community acceptability of a novel home-based viral load test device.

Methods: In 2021, we conducted 15 interviews and 3 virtual focus groups with PWH involved in HIV cure research.

View Article and Find Full Text PDF

Frequent viral load testing is necessary during analytical treatment interruptions (ATIs) in HIV cure-directed clinical trials, though such may be burdensome and inconvenient to trial participants. We implemented a national, cross-sectional survey in the United States to examine the acceptability of a novel home-based peripheral blood collection device for HIV viral load testing. Between June and August 2021, we distributed an online survey to people with HIV (PWH) and community members, biomedical HIV cure researchers and HIV care providers.

View Article and Find Full Text PDF

The high fatality-to-case ratio of ovarian cancer is directly related to platinum resistance. Exportin-1 (XPO1) is a nuclear exporter that mediates nuclear export of multiple tumor suppressors. We investigated possible clinicopathologic correlations of XPO1 expression levels and evaluated the efficacy of XPO1 inhibition as a therapeutic strategy in platinum-sensitive and -resistant ovarian cancer.

View Article and Find Full Text PDF

Background: The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other "dioxin-like compounds" (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway.

View Article and Find Full Text PDF

The "vanishing bone" syndromes represent a group of rare skeletal disorders characterized by osteolysis and joint destruction, which can mimic severe rheumatoid arthritis. Winchester syndrome was one of the first recognized autosomal-recessive, multicentric forms of the disorder. It was originally described nearly 50 years ago in two sisters with a severe crippling osteolysis.

View Article and Find Full Text PDF

Eukaryotic elongation factor-2 kinase (eEF-2K) is a Ca(2+)/calmodulin-dependent enzyme that negatively regulates protein synthesis. eEF-2K has been shown to be up-regulated in cancer, and to play an important role in cell survival through inhibition of protein synthesis. Post-translational modification of protein synthesis machinery is important for its regulation and could be critical for survival of cancer cells encountering stress.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) repressor (AHRR) inhibits AHR-mediated transcription and has been associated with reproductive dysfunction and tumorigenesis in humans. Previous studies have characterized the repressor function of AHRRs from mice and fish, but the human AHRR ortholog (AHRR(715)) appeared to be nonfunctional in vitro. Here, we report a novel human AHRR cDNA (AHRRDelta8) that lacks exon 8 of AHRR(715).

View Article and Find Full Text PDF

MicroRNAs are short non-coding RNA molecules able to affect stability and/or translation of mRNA, thereby regulating the expression of genes involved in many biological processes. We report here that microRNAs miR-27a and miR-451 are involved in activating the expression of P-glycoprotein, the MDR1 gene product that confers cancer cell resistance to a broad range of chemotherapeutics. We showed that expressions of miR-27a and miR-451 were up-regulated in multidrug resistant (MDR) cancer cell lines A2780DX5 and KB-V1, as compared with their parental lines A2780 and KB-3-1.

View Article and Find Full Text PDF

Activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin causes altered gene expression and toxicity. The AHR repressor (AHRR) inhibits AHR signaling through a proposed mechanism involving competition with AHR for dimerization with AHR nuclear translocator (ARNT) and binding to AHR-responsive enhancer elements (AHREs). We sought to delineate the relative roles of competition for ARNT and AHREs in the mechanism of repression.

View Article and Find Full Text PDF

Ligand-activated receptors are well-known targets of environmental chemicals that disrupt endocrine signaling. Genomic approaches are providing new opportunities to understand the comparative biology and molecular evolution of these receptors. One example of this is the aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) transcription factor through which planar aromatic hydrocarbons cause altered gene expression and toxicity.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The recently identified AHR repressor (AHRR) forms a negative feedback loop with the AHR. We investigated AHRR structure, function, evolution, and regulation in zebrafish, a powerful model in developmental biology and toxicology.

View Article and Find Full Text PDF