Publications by authors named "Birgit Mitter"

Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities.

View Article and Find Full Text PDF

Seed germination critically determines successful plant establishment and agricultural productivity. In the plant holobiont's life cycle, seeds are hubs for microbial communities' assembly, but what exactly shapes the holobiont during germination remains unknown. Here, 16S rRNA gene amplicon sequencing characterized the bacterial communities in embryonic compartments (cotyledons and axes) and on seed coats pre- and post-germination of four soybean () cultivars, in the presence or absence of exogenous abscisic acid (ABA), which prevented germination and associated metabolism of seeds that had imbibed.

View Article and Find Full Text PDF

Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact.

View Article and Find Full Text PDF

Seeds offer an internal microbial niche, termed the endosphere, colonized by communities of endophytic bacteria. To elucidate the functions of seed endophytes during germination and early plant growth, studies with culturable isolates are essential. Conventional growth media favor few fast-growing taxa, while micro organisms with restricted nutrient requirements are usually outcompeted prior to isolation.

View Article and Find Full Text PDF

The modes of interactions between plants and plant-associated microbiota are manifold, and secondary metabolites often play a central role in plant-microbe interactions. Abiotic and biotic (including both plant pathogens and endophytes) stress can affect the composition and concentration of secondary plant metabolites, and thus have an influence on chemical compounds that make up for the taste and aroma of fruit. While the role of microbiota in growth and health of plants is widely acknowledged, relatively little is known about the possible effect of microorganisms on the quality of fruit of plants they are colonizing.

View Article and Find Full Text PDF

In the past, the potato plant microbiota and rhizosphere have been studied in detail to improve plant growth and fitness. However, less is known about the postharvest potato tuber microbiome and its role in storage stability. The storage stability of potatoes depends on genotype and storage conditions, but the soil in which tubers were grown could also play a role.

View Article and Find Full Text PDF

The plant endosphere is colonized by complex microbial communities and microorganisms, which colonize the plant interior at least part of their lifetime and are termed endophytes. Their functions range from mutualism to pathogenicity. All plant organs and tissues are generally colonized by bacterial endophytes and their diversity and composition depend on the plant, the plant organ and its physiological conditions, the plant growth stage as well as on the environment.

View Article and Find Full Text PDF

The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing.

View Article and Find Full Text PDF

Plants are associated with highly diverse microbiota, which are crucial partners for their host carrying out important functions. Essentially, they are involved in nutrient supply, pathogen antagonism and protection of their host against different types of stress. The potential of microbial inoculants has been demonstrated in numerous studies, primarily under greenhouse conditions.

View Article and Find Full Text PDF

Strong efforts have been made to understand the bacterial communities in potato plants and the rhizosphere. Research has focused on the effect of the environment and plant genotype on bacterial community structures and dynamics, while little is known about the origin and assembly of the bacterial community, especially in potato tubers. The tuber microbiota, however, may be of special interest as it could play an important role in crop quality, such as storage stability.

View Article and Find Full Text PDF

In endophytes, the abundance of genes coding for enzymes processing reactive oxygen species (ROS), including hydrogen peroxide (HO), argues for a crucial role of ROS metabolism in plant-microbe interaction for plant colonization. Here, we studied HO metabolism of bread wheat ( L.) seeds and their microbiota during germination and early seedling growth, the most vulnerable stages in the plant life cycle.

View Article and Find Full Text PDF

Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of , and its model organisms and , a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the species to get new insights into the distinction between the two types of plant-microbe interactions.

View Article and Find Full Text PDF

Plant microbiota are the subject of new product developments, primarily aimed at improving plant health, nutrition, and stress resilience. However, current application of microbials in the field faces multiple challenges and we propose that multiple aspects need to be considered, for example, understanding the complexity and ecological behaviour of natural microbiota.

View Article and Find Full Text PDF
Article Synopsis
  • Most plant tissues are inhabited by endophytes, and while the root microbiome is well-studied, microbiota associated with reproductive organs like panicles requires more research.
  • This study focused on understanding the bacterial communities in the panicles and roots of two grass species collected from different locations in Austria, using advanced sequencing techniques.
  • Findings showed that roots had a more diverse microbiota influenced by both plant organ and location, but host genotype only affected root communities; panicle microbiota was less diverse and more dependent on its origin.
View Article and Find Full Text PDF

The role of the plant microbiota in plant establishment, growth and health is well studied, but the dynamics of postharvest crop microbiota and its role in postharvest crop quality are largely unexplored, although food loss is an enormous issue worldwide. The microbiota might be especially important during crop storage by either preventing or favouring rots, or quality loss due to, for example, sprouting, saccharification, water loss or spoilage. We need more research on plant-microbe interactions in postharvest crops to be in future able to provide microbial solutions for plant production along the whole food chain from field to fork.

View Article and Find Full Text PDF

Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism.

View Article and Find Full Text PDF

The microbial component of healthy seeds - the seed microbiome - appears to be inherited between plant generations and can dynamically influence germination, plant performance, and survival. As such, methods to optimize the seed microbiomes of major crops could have far-reaching implications for plant breeding and crop improvement to enhance agricultural food, feed, and fiber production. Here, we describe a new approach to modulate seed microbiomes of elite crop seed embryos and concomitantly design the traits to be mediated by seed microbiomes.

View Article and Find Full Text PDF

The rhizosphere hosts a rich microflora supporting plant nutrition and health. We examined bacterial rhizosphere microbiota of Solanum tuberosum grown in its center of origin, the Central Andean Highlands, at different vegetation stages and sites at altitudes ranging from 3245 to 4070 m.a.

View Article and Find Full Text PDF

The plant holobiont comprises the plant and its associated microbiota, which interact with each other and determine holobiont functioning and plant performance. We have started to understand the complexity of the involved microorganisms and their interactions, however, we need more research on plant-microbiome interactions to understand holobiont functioning. By 2020 we expect that our knowledge on these interactions will have considerably increased facilitating crop management practices based on the interactions of the plant holobiont.

View Article and Find Full Text PDF

A range of lab-scale methods for encapsulation of plant growth-promoting bacteria in alginate beads intended for seed coating was evaluated: contact-spotting, extrusion through syringe with/without vibration, ejection by robotic liquid handler, extrusion by centrifugal force and commercial devices (nanodispenser, aerodynamically assisted jetting, encapsulator). Two methods were selected based on throughput (encapsulator: 1.5-5 mL/min; syringe with subsequent pulverisation: 5 mL/min).

View Article and Find Full Text PDF

Unlabelled: It is widely accepted that bacterial endophytes actively colonize plants, interact with their host, and frequently show beneficial effects on plant growth and health. However, the mechanisms of plant-endophyte communication and bacterial adaption to the plant environment are still poorly understood. Here, whole-transcriptome sequencing of B.

View Article and Find Full Text PDF

The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7, and S8), which were isolated from maize seeds of healthy plants.

View Article and Find Full Text PDF