Publications by authors named "Bing-Cheng Shieh"

The integration of light-emitting diodes (LEDs) into the flexible devices has exhibited a great potential in the next-generation consumer electronics. In this study, we have demonstrated an exfoliated InGaN nanomembrane LED (NM-LED) separated from a GaN/sapphire substrate through an electrochemically wet etching process. The peak wavelengths blue-shifted phenomenon of the photoluminescence (PL) and the electroluminescence spectra were observed on the free-standing NM-LED compared to the nontreated LED with the same structure, which can be ascribed to the partial strain relaxation of the LED structure confirmed by the Raman spectra and the X-ray diffraction curves.

View Article and Find Full Text PDF

We report here a simple and robust process to convert embedded conductive GaN epilayers into insulating GaOx and demonstrate its efficacy in vertical current blocking and lateral current steering in a working LED device. The fabrication processes consist of laser scribing, electrochemical (EC) wet-etching, photoelectrochemical (PEC) oxidation, and thermal oxidization of a sacrificial n(+)-GaN:Si layer. The conversion of GaN is made possible through an intermediate stage of porosification where the standard n-type GaN epilayers can be laterally and selectively anodized into a nanoporous (NP) texture while keeping the rest of the layers intact.

View Article and Find Full Text PDF

High-oriented Li-Al layered double hydroxide (LDH) films were grown on an InGaN light-emitting diode (LED) structures by immersing in an aqueous alkaline Al(3+)- and Li+-containing solution. The stand upward and adjacent Li-Al LDH platelet structure was formed on the LED structure as a textured film to increase the light extraction efficiency. The light output power of the LED structure with the Li-Al LDH platelet structure had a 31% enhancement compared with a conventional LED structure at 20 mA.

View Article and Find Full Text PDF