We present an artificial neural network architecture, termed STENCIL-NET, for equation-free forecasting of spatiotemporal dynamics from data. STENCIL-NET works by learning a discrete propagator that is able to reproduce the spatiotemporal dynamics of the training data. This data-driven propagator can then be used to forecast or extrapolate dynamics without needing to know a governing equation.
View Article and Find Full Text PDFProc Math Phys Eng Sci
June 2022
We present a statistical learning framework for robust identification of differential equations from noisy spatio-temporal data. We address two issues that have so far limited the application of such methods, namely their robustness against noise and the need for manual parameter tuning, by proposing stability-based model selection to determine the level of regularization required for reproducible inference. This avoids manual parameter tuning and improves robustness against noise in the data.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2022
We present data structures and algorithms for native implementations of discrete convolution operators over Adaptive Particle Representations (APR) of images on parallel computer architectures. The APR is a content-adaptive image representation that locally adapts the sampling resolution to the image signal. It has been developed as an alternative to pixel representations for large, sparse images as they typically occur in fluorescence microscopy.
View Article and Find Full Text PDFWe propose a statistical learning framework based on group-sparse regression that can be used to (i) enforce conservation laws, (ii) ensure model equivalence, and (iii) guarantee symmetries when learning or inferring differential-equation models from data. Directly learning interpretable mathematical models from data has emerged as a valuable modeling approach. However, in areas such as biology, high noise levels, sensor-induced correlations, and strong intersystem variability can render data-driven models nonsensical or physically inconsistent without additional constraints on the model structure.
View Article and Find Full Text PDFModern microscopes create a data deluge with gigabytes of data generated each second, and terabytes per day. Storing and processing this data is a severe bottleneck, not fully alleviated by data compression. We argue that this is because images are processed as grids of pixels.
View Article and Find Full Text PDFWe quantified cell population increase in the quail embryo enteric nervous system (ENS) from E2.5 (about 1500 cells) to E12 (about 8 million cells). We then probed ENS proliferative capacity by grafting to the chorio-allantoic membrane large (600 cells) and small (40 cells) populations of enteric neural crest (ENC) cells with aneural gut.
View Article and Find Full Text PDFBiologically functional DNA hairpins are found in archaea, prokaryotes and eukaryotes, playing essential roles in various DNA transactions. However, during DNA replication, hairpin formation can stall the polymerase and is therefore prevented by the single-stranded DNA binding protein (SSB). Here, we address the question how hairpins maintain their functional secondary structure despite SSB's presence.
View Article and Find Full Text PDFIn neoplastic cell growth, clones and subclones are variable both in size and mutational spectrum. The largest of these clones are believed to represent those cells with mutations that make them the most "fit," in a Darwinian sense, for expansion in their microenvironment. Thus, the degree of quantitative clonal expansion is regarded as being determined by innate qualitative differences between the cells that originate each clone.
View Article and Find Full Text PDFMathematical models of a cell invasion wave have included both continuum partial differential equation (PDE) approaches and discrete agent-based cellular automata (CA) approaches. Here we are interested in modelling the spatial and temporal dynamics of the number of divisions (generation number) that cells have undergone by any time point within an invasion wave. In the CA framework this is performed from agent lineage tracings, while in the PDE approach a multi-species generalized Fisher equation is derived for the cell density within each generation.
View Article and Find Full Text PDFCell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level.
View Article and Find Full Text PDF