Publications by authors named "Bethany B Moore"

Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease. Despite recent treatment advancements, survival rates for IPF patients remain low, reflecting the urgent need for a deeper understanding of disease mechanisms. A key feature of IPF progression is the excessive growth of fibroblasts and their transformation into myofibroblasts, driven by a profibrotic feedforward loop involving mediators like transforming growth factor (TGF) α and β1.

View Article and Find Full Text PDF

The global incidence of respiratory infectious diseases caused by bacteria continues to increase, with acute lower respiratory tract infections contributing to significant morbidity and mortality. Preclinical models designed to investigate such respiratory bacterial diseases are of utmost importance to decipher their pathogenesis and develop novel targets for intervention and treatment. Animal models offer the powerful ability to investigate different pneumonia types at varying stages of infection and disease.

View Article and Find Full Text PDF

Patients who survive sepsis are predisposed to new hospitalizations for respiratory failure, but the underlying mechanisms are unknown. Using a murine model in which prior sepsis predisposes to enhanced lung injury, we previously discovered that classical monocytes persist in the lungs after long-term recovery from sepsis and exhibit enhanced cytokine expression after secondary challenge with intra-nasal lipopolysaccharide. Here, we hypothesized that immune reprogramming of post-sepsis monocytes and altered ontogeny predispose to enhanced lung injury.

View Article and Find Full Text PDF

Acute virulence in is linked to an excessive proinflammatory cytokine cascade during laboratory murine infection. Previous work showed that secretes a pore forming protein, PLP1, that is required for efficient cytolytic egress from host cells. Deletion of the gene results in defective egress from infected culture cells and a marked reduction in parasite virulence.

View Article and Find Full Text PDF

The prevalence of obesity and metabolic diseases have risen significantly over the past decades. Chronic inflammation in obesity is a link between obesity and secondary disease. While macrophages and monocytes are known to contribute to metabolic disease risk during diet exposure, little is known about the contribution of neutrophils.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients die from the disease within 2-5 years. The molecular pathogenesis underlying the immunologic changes that occur in IPF is poorly understood.

View Article and Find Full Text PDF

Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice.

View Article and Find Full Text PDF

The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates every menstrual cycle or upon tissue damage. Here, we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of five healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells, representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations.

View Article and Find Full Text PDF

XZ17 was isolated from the lung homogenate of a healthy C57BL/6J mouse. XZ17 is diminished in the lungs of syngeneic bone marrow-transplanted recipient mice. Long-read sequencing of XZ17 yielded a single genome of 1,948,140 bp, with a GC content of 34.

View Article and Find Full Text PDF

Patients coinfected with respiratory syncytial virus (RSV) and bacteria have longer hospital stays, higher risk of intensive care unit admission, and worse outcomes. We describe a model of RSV line 19F/methicillin-resistant (MRSA) USA300 coinfection that does not impair viral clearance, but prior RSV infection enhances USA300 MRSA bacterial growth in the lung. The increased bacterial burden post-RSV correlates with reduced accumulation of neutrophils and impaired bacterial killing by alveolar macrophages.

View Article and Find Full Text PDF

Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) leads to permanent lung damage, and while antifibrotic treatments help slow its progression, response varies among patients, highlighting the need for more targeted treatment approaches.
  • Researchers used latent class analysis (LCA) on large patient groups to identify two distinct molecular endotypes of IPF, with one class (class 2) showing higher biomarker levels and a greater risk of poor outcomes like death or lung transplant.
  • The study found that class 2 patients had a better response to antifibrotic therapy compared to class 1 patients, indicating that understanding these endotypes may improve future treatment strategies for IPF patients.
View Article and Find Full Text PDF

Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages.

View Article and Find Full Text PDF

Unlabelled: The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood.

View Article and Find Full Text PDF

Follicular regulatory T cells (Tfr) can play opposite roles in the regulation of germinal center (GC) responses. Depending on the studies, Tfr suppress or support GC and B cell affinity maturation. However, which factors determine positive vs.

View Article and Find Full Text PDF

Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: ) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, ) early disease risk factors and methods to improve diagnosis, and ) innovative approaches toward clinical trial design for pulmonary fibrosis.

View Article and Find Full Text PDF

Pulmonary fibrosis is a chronic and often fatal disease. The pathogenesis is characterized by aberrant repair of lung parenchyma, resulting in loss of physiological homeostasis, respiratory failure, and death. The immune response in pulmonary fibrosis is dysregulated.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is characterized by ongoing tissue damage and scarring in the lungs, driven by persistent activation of mesenchymal cells related to various signaling pathways.
  • The study focuses on the role of the transcription factor NFAT1, which controls a key profibrotic mediator (autotaxin) in lung mesenchymal cells, finding that mice lacking NFAT1 have improved survival and less lung fibrosis after injury.
  • The research indicates that NFAT1 activates profibrotic processes in IPF and suggests it could be a potential target for therapeutic intervention in treating the disease.
View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation.

View Article and Find Full Text PDF

The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological homeostasis.

View Article and Find Full Text PDF

Deep venous thrombosis and residual thrombus burden correlates with circulating IL-6 levels in humans. To investigate the cellular source and role of IL-6 in thrombus resolution, Wild type C57BL/6J (WT), and IL-6 mice underwent induction of VT via inferior vena cava (IVC) stenosis or stasis. Vein wall (VW) and thrombus were analyzed by western blot, immunohistochemistry, and flow cytometry.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible disease characterized by collagen deposition within the interstitium of the lung. This impairs gas exchange and results in eventual respiratory failure. Clinical studies show a correlation between elevated neutrophil numbers and IPF disease progression; however, the mechanistic roles neutrophils play in this disease are not well described.

View Article and Find Full Text PDF

Coronavirus-associated coagulopathy (CAC) is a morbid and lethal sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CAC results from a perturbed balance between coagulation and fibrinolysis and occurs in conjunction with exaggerated activation of monocytes/macrophages (MO/Mφs), and the mechanisms that collectively govern this phenotype seen in CAC remain unclear. Here, using experimental models that use the murine betacoronavirus MHVA59, a well-established model of SARS-CoV-2 infection, we identify that the histone methyltransferase mixed lineage leukemia 1 (MLL1/KMT2A) is an important regulator of MO/Mφ expression of procoagulant and profibrinolytic factors such as tissue factor (F3; TF), urokinase (PLAU), and urokinase receptor (PLAUR) (herein, "coagulopathy-related factors") in noninfected and infected cells.

View Article and Find Full Text PDF