The field of Alzheimer's disease (AD) has witnessed recent breakthroughs in the development of disease-modifying biologics and diagnostic markers. While immunotherapeutic interventions have provided much-awaited solutions, nucleic acid-based tools represent other avenues of intervention; however, these approaches are costly and invasive, and they have serious side effects. Previously, we have shown in AD animal models that tolfenamic acid (TA) can lower the expression of AD-related genes and their products and subsequently reduce pathological burden and improve cognition.
View Article and Find Full Text PDFRecent evidence suggests that deletion of STUB1─a pivotal negative regulator of interferon-γ sensing─may potentially clear malignant cells. However, current studies rely primarily on genetic approaches, as pharmacological inhibitors of STUB1 are lacking. Identifying a tool compound will be a step toward validating the target in a broader therapeutic sense.
View Article and Find Full Text PDFCerebral amyloid angiopathy (CAA), characterized by cerebral vascular amyloid accumulation, neuroinflammation, microbleeds, and white matter (WM) degeneration, is a common comorbidity in Alzheimer disease and a prominent contributor to vascular cognitive impairment and dementia. WM loss was recently reported in the corpus callosum (CC) in the rTg-DI rat model of CAA. The current study shows that the CC exhibits a much lower CAA burden compared with the adjacent cortex.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) promote immunosuppressive activities in the tumor microenvironment (TME), resulting in increased tumor burden and diminishing the anti-tumor response of immunotherapies. While primary and metastatic tumors are typically the focal points of therapeutic development, the immune cells of the TME are differentially programmed by the tissue of the metastatic site. In particular, MDSCs are programmed uniquely within different organs in the context of tumor progression.
View Article and Find Full Text PDFPerfluoroalkyl substances (PFAS) are a family of toxicants universally detected in human serum and known to cause dyslipidemia in animals and humans. Hepatic steatosis, which is defined as lipid deposition in the liver, is known to be a consequence of poor diet. Similarly, PFAS are known to induce hepatic steatosis in animals on a low-fat chow.
View Article and Find Full Text PDFProteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510.
View Article and Find Full Text PDFPerfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.
View Article and Find Full Text PDFHepatic steatosis increases risk of fatty liver and cardiovascular disease. Perfluorooctanesulfonic acid (PFOS) is a persistent, bio-accumulative pollutant that has been used in industrial and commercial applications. PFOS administration induces hepatic steatosis in rodents and increases lipogenic gene expression signatures in cultured hepatocytes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2020
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat in the liver. An international consensus panel has recently proposed to rename the disease to metabolic dysfunction associated with fatty liver disease (MAFLD). The disease can range from simple steatosis (fat accumulation) to nonalcoholic steatohepatitis (NASH) which represents a severe form of NAFLD and is accompanied by inflammation, fibrosis, and hepatocyte damage in addition to significant steatosis.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease in the Western population. We investigated the association of nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus on CYP3A4 activity in human liver tissue from brain dead donors ( n = 74). Histopathologically graded livers were grouped into normal ( n = 24), nonalcoholic fatty liver (NAFL, n = 26), and nonalcoholic steatohepatitis (NASH, n = 24) categories.
View Article and Find Full Text PDFWe describe a sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) based method for label-free, simultaneous, relative quantification of drug metabolism enzymes in human liver microsomes (HLM; n = 78). In-solution tryptic digestion was aided by a pressure cycling method, which allowed a 90 min incubation time, a significant reduction over classical protocols (12-18 h). Digested peptides were separated on an Acquity UHPLC Peptide BEH C18 column using a 60 min gradient method at a flow rate of 0.
View Article and Find Full Text PDF