Materials (Basel)
February 2025
Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials-Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC)-TEMPO, and CarboxyMethyl Cellulose (CMC)-are chosen for their scaffolding capabilities.
View Article and Find Full Text PDFBiofabrication
August 2024
Current research practice for optimizing bioink involves exhaustive experimentation with multi-material composition for determining the printability, shape fidelity and biocompatibility. Predicting bioink properties can be beneficial to the research community but is a challenging task due to the non-Newtonian behavior in complex composition. Existing models such as Cross model become inadequate for predicting the viscosity for heterogeneous composition of bioinks.
View Article and Find Full Text PDFWe propose a novel framework that combines state-of-the-art deep learning approaches with pre- and post-processing algorithms for particle detection in complex/heterogeneous backgrounds common in the manufacturing domain. Traditional methods, like size analyzers and those based on dilution, image processing, or deep learning, typically excel with homogeneous backgrounds. Yet, they often fall short in accurately detecting particles against the intricate and varied backgrounds characteristic of heterogeneous particle-substrate (HPS) interfaces in manufacturing.
View Article and Find Full Text PDF3D Print Addit Manuf
April 2023
Lattice structures are composed of a collection of struts with different orientations. During slicing, the inclined struts generate multiple disjoint contours along the build direction in additive manufacturing (AM). These contours are substantially smaller in size due to the narrow cross-section of the individual lattice struts, and they can lead to contour plurality in AM processes.
View Article and Find Full Text PDFMicro-scale inorganic particles (d > 1 µm) have reduced surface area and higher density, making them negatively buoyant in most dip-coating mixtures. Their controlled delivery in hard-to-reach places through entrainment is possible but challenging due to the density mismatch between them and the liquid matrix called liquid carrier system (LCS). In this work, the particle transfer mechanism from the complex density mismatching mixture was investigated.
View Article and Find Full Text PDF3D bio-printing is an emerging technology to fabricate tissue scaffold in-vitro through the controlled allocation of biomaterial and cells, which can mimic the in-vivo counterpart of living tissue. Live cells are often encapsulated into the biomaterials (i.e.
View Article and Find Full Text PDFA novel lattice structure manufacturing process is proposed in this article, which has the potential to overcome the manufacturing shortcomings of small-scale metal lattice structure. The proposed hierarchical process has four segments: Design, Bending, Dip, and Join (DBDJ). The proposed research use one-dimensional metallic wires/rods instead of powder, two-dimensional sheet, or liquid metal, which is highly transformative than the .
View Article and Find Full Text PDFIn this paper, a new possibility of fabricating a metal lattice structure with a continuous rod is demonstrated. A multi-layer, periodic, and aperiodic lattice structure can be manufactured with a continuous thin rod by bending it with a repetitive pattern. However, joining their nodes are challenging and an important problem to solve.
View Article and Find Full Text PDFThree-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue.
View Article and Find Full Text PDFBio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD environment is difficult and oftentimes inaccurate.
View Article and Find Full Text PDF