The mammalian dentate gyrus contributes to mnemonic function by parsing similar events and places. The disparate activity patterns of mossy cells and granule cells are believed to enable this function yet the mechanisms that drive this circuit dynamic remain elusive. We identified a novel inhibitory interneuron subtype, characterized by VGluT3 expression, with overwhelming target selectivity for mossy cells while also revealing that CCK, PV, SST and VIP interneurons preferentially innervate granule cells.
View Article and Find Full Text PDFMotivated behavior is often framed in terms of biologically grounded outcomes, such as food or threat. Yet many motivated actions, like the pursuit of safety or agency, depend on outcomes that lack explicit sensory value and must instead be inferred from experience. Here, we identify a thalamostriatal circuit mechanism by which such internally constructed outcomes acquire motivational value.
View Article and Find Full Text PDFThe mammalian dentate gyrus contributes to mnemonic function by parsing similar events and places. The disparate activity patterns of mossy cells and granule cells is believed to enable this function yet the mechanisms that drive this circuit dynamic remain elusive. We identified a novel inhibitory interneuron subtype, characterized by VGluT3 expression, with overwhelming target selectivity for mossy cells while also revealing that CCK, PV, SOM and VIP interneurons preferentially innervate granule cells.
View Article and Find Full Text PDFThe prefrontal cortex (PFC) is essential for top-down control of affect and its dysfunction is implicated in many psychiatric disorders. Inhibitory interneurons expressing somatostatin have been implicated in cognition, affect, and disease. However, somatostatin's function as a neuropeptide transmitter remains unclear.
View Article and Find Full Text PDFIn recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate specific neuronal subtypes are still limited. Here, we performed systematic analysis of single-cell genomic data to identify enhancer candidates for each of the telencephalic interneuron subtypes.
View Article and Find Full Text PDF