Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.
View Article and Find Full Text PDFAcute gastroenteritis remains the second leading cause of death among children under the age of 5 worldwide. While enteric viruses are the most common etiology, the drivers of their virulence remain incompletely understood. We recently found that cells infected with rotavirus, the most prevalent enteric virus in infants and young children, initiate hundreds of intercellular calcium waves that enhance both fluid secretion and viral spread.
View Article and Find Full Text PDFRotaviruses are the primary cause of severe gastroenteritis in infants and young children throughout the world. To combat rotavirus illness, several live oral vaccines have been developed, or are under development, that are formulated from attenuated human or human-animal reassortant strains of rotavirus. While the effectiveness of these vaccines is generally high in developed countries, the same vaccines are significantly less effective in many developing countries, where the need for rotavirus vaccines is greatest.
View Article and Find Full Text PDFJ Gen Virol
October 2023
Reverse genetic systems have been used to introduce heterologous sequences into the rotavirus segmented double-stranded (ds)RNA genome, enabling the generation of recombinant viruses that express foreign proteins and possibly serve as vaccine vectors. Notably, insertion of SARS-CoV-2 sequences into the segment seven (NSP3) RNA of simian SA11 rotavirus was previously shown to result in the production of recombinant viruses that efficiently expressed the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the S1 region of the SARS-CoV-2 spike protein. However, efforts to generate a similar recombinant (r) SA11 virus that efficiently expressed full-length S1 were less successful.
View Article and Find Full Text PDFThe live oral rotavirus RV1 (Rotarix) vaccine is formulated from the human G1P[8] RIX4414 virus. Based on RIX4414 sequences, T7 expression plasmids were constructed that supported recovery of recombinant RIX4414-like viruses by reverse genetics. These plasmids will advance the study of the RV1 vaccine, possibly allowing improvements to its efficacy.
View Article and Find Full Text PDFThe interferon (IFN)-inducible 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway plays a critical role in antiviral immunity. Group A rotaviruses, including the simian SA11 strain, inhibit this pathway through two activities: an E3-ligase related activity of NSP1 that degrades proteins necessary for IFN signaling, and a phosphodiesterase (PDE) activity of VP3 that hydrolyzes the RNase L-activator 2',5'-oligoadenylate. Unexpectedly, we found that a recombinant (r) SA11 double mutant virus deficient in both activities (rSA11-VP3H797R-NSP1ΔC17) retained the ability to prevent RNase L activation.
View Article and Find Full Text PDFRotavirus, a segmented double-stranded RNA virus of the family, is a primary cause of acute gastroenteritis in young children. In countries where rotavirus vaccines are widely used, norovirus (NoV) has emerged as the major cause of acute gastroenteritis. Towards the goal of creating a combined rotavirus-NoV vaccine, we explored the possibility of generating recombinant rotaviruses (rRVs) expressing all or portions of the NoV GII.
View Article and Find Full Text PDFVaccines (Basel)
May 2021
Among vaccines administered to children are those targeting rotavirus, a segmented double-stranded RNA virus that represents a major cause of severe gastroenteritis. To explore the feasibility of establishing a combined rotavirus-SARS-CoV-2 vaccine, we generated recombinant (r)SA11 rotaviruses with modified segment 7 RNAs that contained coding cassettes for NSP3, a translational 2A stop-restart signal, and a FLAG-tagged portion of the SARS-CoV-2 spike (S) protein: S1 fragment, N-terminal domain (NTD), receptor-binding domain (RBD), extended RBD (ExRBD), or S2 core (CR) domain. Generation of rSA11 containing the S1 coding sequence required a sequence insertion of 2.
View Article and Find Full Text PDFRotavirus, a segmented double-stranded RNA virus, is a major cause of acute gastroenteritis in young children. The introduction of live oral rotavirus vaccines has reduced the incidence of rotavirus disease in many countries. To explore the possibility of establishing a combined rotavirus-SARS-CoV-2 vaccine, we generated recombinant (r)SA11 rotaviruses with modified segment 7 RNAs that contained coding sequences for NSP3 and FLAG-tagged portions of the SARS-CoV-2 spike (S) protein.
View Article and Find Full Text PDFThe segmented 18.5-kbp dsRNA genome of rotavirus expresses 6 structural and 6 nonstructural proteins. We investigated the possibility of using the recently developed plasmid-based rotavirus reverse genetics (RG) system to generate recombinant viruses that express a separate heterologous protein in addition to the 12 viral proteins.
View Article and Find Full Text PDFRotaviruses are a large and evolving population of segmented double-stranded RNA viruses that cause severe gastroenteritis in the young of many mammalian and avian host species, including humans. With the recent advent of rotavirus reverse genetics systems, it has become possible to use directed mutagenesis to explore rotavirus biology, modify and optimize existing rotavirus vaccines, and develop rotavirus multitarget vaccine vectors. In this report, we describe a simplified reverse genetics system that allows the efficient and reliable recovery of recombinant rotaviruses.
View Article and Find Full Text PDFLike many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging.
View Article and Find Full Text PDFMicrobiol Resour Announc
July 2019
A collection of recombinant rotaviruses that express the fluorescent markers UnaG, mKate, mRuby, TagBFP, CFP, or YFP as separate proteins was generated. Genes for the fluorescent proteins were inserted into genome segment 7 without compromising expression of the protein NSP3. These recombinant rotaviruses are valuable for analyzing rotavirus biology by fluorescence-based live-cell imaging.
View Article and Find Full Text PDF